【LLM大模型】开源医疗大模型排行榜: 健康领域大模型基准测试

Image source: https://arxiv.org/pdf/2311.05112.pdf

多年来,大型语言模型 (LLMs) 已经发展成为一项具有巨大潜力,能够彻底改变医疗行业各个方面的开创性技术。这些模型,如 GPT-3GPT-4Med-PaLM 2,在理解和生成类人文本方面表现出了卓越的能力,使它们成为处理复杂医疗任务和改善病人护理的宝贵工具。它们在多种医疗应用中显示出巨大的前景,如医疗问答 (QA) 、对话系统和文本生成。此外,随着电子健康记录 (EHRs) 、医学文献和病人生成数据的指数级增长,LLMs 可以帮助医疗专业人员提取宝贵见解并做出明智的决策。

然而,尽管大型语言模型 (LLMs) 在医疗领域具有巨大的潜力,但仍存在一些重要且具体的挑战需要解决。

当模型用于娱乐对话方面时,错误的影响很小; 然而,在医疗领域使用时,情况并非如此,错误的解释和答案可能会对病人的护理和结果产生严重后果。语言模型提供的信息的准确性和可靠性可能是生死攸关的问题,因为它可能影响医疗决策、诊断和治疗计划。

例如,当有人问 GPT-3 关于孕妇可以用什么药的问题时,GPT-3 错误地建议使用四环素,尽管它也正确地说明了四环素对胎儿有害,孕妇不应该用。如果真按照这个错误的建议去给孕妇用药,可能会害得孩子将来骨头长不好。

Image source: https://arxiv.org/pdf/2311.05112.pdf

要想在医疗领域用好这种大型语言模型,就得根据医疗行业的特点来设计和基准测试这些模型。因为医疗数据和应用有其特殊的地方,得考虑到这些。而且,开发方法来评估这些用于医疗的模型不只是为了研究,而是因为它们在现实医疗工作中用错了可能会带来风险,所以这事儿实际上很重要。

开源医疗大模型排行榜旨在通过提供一个标准化的平台来评估和比较各种大型语言模型在多种医疗任务和数据集上的性能,以此来解决这些挑战和限制。通过提供对每个模型的医疗知识和问答能力的全面评估,该排行榜促进了更有效、更可靠的医疗大模型的发展。

这个平台使研究人员和从业者能够识别不同方法的优势和不足,推动该领域的进一步发展,并最终有助于改善患者的治疗结果。

数据集、任务和评估设置

医疗大模型排行榜包含多种任务,并使用准确度作为其主要评估指标 (准确度衡量的是语言模型在各个医疗问答数据集中提供的正确答案的百分比)。

MedQA

MedQA 数据集包含来自美国医学执照考试 (USMLE) 的多项选择题。它覆盖了广泛的医学知识,并包括 11,450 个训练集问题和 1,273 个测试集问题。每个问题有 4 或 5 个答案选项,该数据集旨在评估在美国获得医学执照所需的医学知识和推理技能。

MedQA 问题

MedMCQA

MedMCQA 是一个大规模的多项选择问答数据集,来源于印度的医学入学考试 (AIIMS/NEET)。它涵盖了 2400 个医疗领域主题和 21 个医学科目,训练集中有超过 187,000 个问题,测试集中有 6,100 个问题。每个问题有 4 个答案选项,并附有解释。MedMCQA 评估模型的通用医学知识和推理能力。

MedMCQA 问题

PubMedQA

PubMedQA 是一个封闭领域的问答数据集,每个问题都可以通过查看相关上下文 ( PubMed 摘要) 来回答。它包含 1,000 个专家标注的问题 - 答案对。每个问题都附有 PubMed 摘要作为上下文,任务是提供基于摘要信息的是/否/也许答案。该数据集分为 500 个训练问题和 500 个测试问题。PubMedQA 评估模型理解和推理科学生物医学文献的能力。

PubMedQA 问题

MMLU 子集 (医学和生物学)

MMLU 基准 (测量大规模多任务语言理解) 包含来自各个领域多项选择题。对于开源医疗大模型排行榜,我们关注与医学知识最相关的子集:

  • 临床知识: 265 个问题,评估临床知识和决策技能。
  • 医学遗传学: 100 个问题,涵盖医学遗传学相关主题。
  • 解剖学: 135 个问题,评估人体解剖学知识。
  • 专业医学: 272 个问题,评估医疗专业人员所需的知识。
  • 大学生物学: 144 个问题,涵盖大学水平的生物学概念。
  • 大学医学: 173 个问题,评估大学水平的医学知识。
    每个 MMLU 子集都包含有 4 个答案选项的多项选择题,旨在评估模型对特定医学和生物领域理解。

MMLU 问题

开源医疗大模型排行榜提供了一个鲁棒的评估,衡量模型在医学知识和推理各方面的表现。

洞察与分析

开源医疗大模型排行榜评估了各种大型语言模型 (LLMs) 在一系列医疗问答任务上的表现。以下是我们的一些关键发现:

  • 商业模型如 GPT-4-base 和 Med-PaLM-2 在各个医疗数据集上始终获得高准确度分数,展现了在不同医疗领域中的强劲性能。
  • 开源模型,如 Starling-LM-7Bgemma-7b,Mistral-7B-v0.1 和 Hermes-2-Pro-Mistral-7B,尽管参数量大约只有 70 亿,但在某些数据集和任务上展现出了有竞争力的性能。
  • 商业和开源模型在理解和推理科学生物医学文献 (PubMedQA) 以及应用临床知识和决策技能 (MMLU 临床知识子集) 等任务上表现良好。

图片来源: https://arxiv.org/abs/2402.07023

谷歌的模型 Gemini Pro 在多个医疗领域展现了强大的性能,特别是在生物统计学、细胞生物学和妇产科等数据密集型和程序性任务中表现尤为出色。然而,它在解剖学、心脏病学和皮肤病学等关键领域表现出中等至较低的性能,揭示了需要进一步改进以应用于更全面的医学的差距。

Image source : https://arxiv.org/abs/2402.07023

提交你的模型以供评估

要在开源医疗大模型排行榜上提交你的模型进行评估,请按照以下步骤操作:

1. 将模型权重转换为 Safetensors 格式

首先,将你的模型权重转换为 safetensors 格式。Safetensors 是一种新的存储权重的格式,加载和使用起来更安全、更快。将你的模型转换为这种格式还将允许排行榜在主表中显示你模型的参数数量。

2. 确保与 AutoClasses 兼容

在提交模型之前,请确保你可以使用 Transformers 库中的 AutoClasses 加载模型和分词器。使用以下代码片段来测试兼容性:

	from transformers import AutoConfig, AutoModel, AutoTokenizer

	config = AutoConfig.from_pretrained(MODEL_HUB_ID)

	model = AutoModel.from_pretrained("your model name")

	tokenizer = AutoTokenizer.from_pretrained("your model name")

	 

如果在这一步失败,请根据错误消息在提交之前调试你的模型。很可能你的模型上传不当。

3. 将你的模型公开

确保你的模型可以公开访问。排行榜无法评估私有模型或需要特殊访问权限的模型。

4. 远程代码执行 (即将推出)

目前,开源医疗大模型排行榜不支持需要 use_remote_code=True 的模型。然而,排行榜团队正在积极添加这个功能,敬请期待更新。

5. 通过排行榜网站提交你的模型

一旦你的模型转换为 safetensors 格式,与 AutoClasses 兼容,并且可以公开访问,你就可以使用开源医疗大模型排行榜网站上的 “在此提交!” 面板进行评估。填写所需信息,如模型名称、描述和任何附加细节,然后点击提交按钮。
排行榜团队将处理你的提交并评估你的模型在各个医疗问答数据集上的表现。评估完成后,你的模型的分数将被添加到排行榜中,你可以将它的性能与其他模型进行比较。

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的所有 ⚡️ 大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

全套 《LLM大模型入门+进阶学习资源包↓↓↓ 获取~

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值