最近学习了一门课程《AI Agent入门实战》,了解了如何在Coze平台上创建AI Agent,发现它对我们个人(C端用户)而言十分有用,分享给你一下。
Coze是什么?
Coze(扣子)是字节跳动公司开发的新一代AI应用开发平台,使用这个AI应用开发平台,无论你是否有编码基础,都可以快速搭建基于大语言模型的各类AI Bot,还可以将Bot发布到其他渠道。对于一个AI Agent而言,最重要的能力就是任务规划、调用工具、知识库 和 记忆能力,而这些能力在Coze中你都不需要关注,已经封装好了提供给你,对你而言就是透明的。
如上图所示,我们可以对我们要做的AI Agent先设立人设,然后给它注册想要调用的工具或工作流,还可以给它注册一个内部知识库(文档/图片/表格等),如果想要记忆能力甚至可以直接给它添加一个数据库供其使用,最后再通过调试模块进行测试,一个针对AI Agent的“宇宙最强IDE“也不过如此。
目前,Coze有两个版本:
(1)基础版:面向尝鲜体验的个人和企业开发者,全部功能免费使用,但有一定的限量额度,超过后不可再使用,需切换专业版后继续使用。
(2)专业版:面向对稳定性和用量有更高需求的专业开发者,支持更高团队空间容量和免费知识库容量,付费功能保障专业级 SLA,不限制调用请求频率和总量,费用按实际用量计算。
这里,我用的是基础版,主要是尝尝鲜,做了几个DEMO体验下效果,用到的模型主要是豆包的Function Call模型。未来,我们可能会主要尝试企业内部搭建的FastGPT或Dify,又或者是微软的AutoGen。
下面,主要通过我做的这几个DEMO一起来看看Coze提供的一些关键能力。
强大的工作流配置
我通过Coze创建了一个城市天气助手的Bot,使用了Coze提供的工作流能力,如下图所示,这是一个获取天气预报并解析的工作流:
可以看到,通过一个简单的工作流,我们就快速调用了大模型 和 插件(墨迹天气)的能力,而这些操作在传统的编码场景下,都需要程序员单独来处理,现在则是0代码纯配置就可以了。
基于这个工作流,我再把人设和回复的逻辑配置一下提示词,就可以完成一个Bot的创建。值得一提的是,针对你的提示词,Coze提供了一个优化的功能,可以按照最佳实践将你的提示词做一个优化,这真的是一个很实用的功能。
最后实现的效果如下图所示:
强大的图像流配置
我通过Coze创建了一个产品图背景替换助手的Bot,用到了Coze提供的另一个强大技能:图像流。这也是一个工作流,但是其用到了专门针对图像处理的处理节点,例如图像生成、背景替换、画质提升等等。这些功能对于有做社交媒体运营的朋友,应该挺有帮助的。
最后的效果如下图所示:我把原图 和 想要替换的背景描述给它,它给我输出了一张还算不错的背景替换图。
快捷的知识库应用
Coze支持不同格式的知识库,例如文本类型(如txt, pdf, doc等)、表格类型(如xls等)以及 照片类型(如png, jpg等)。
比如,我创建了一个MongoDB知识助手的Bot,就导入了一些MongoDB的体系课程的pdf文档:
最终的效果如下图所示:
又如,我创建了一个产品图查询助手的Bot,可以基于我导入的产品图资料库,让我可以快速的查找到对应的产品图。
效果如下图所示:
再如,假设我是一个在线课堂的老板,我将课程订单表(Excel)导入到知识库中,通过对人设和回复逻辑的设置,就可以实现一个快速查询的功能:
透明的记忆能力
假设我是一个在线课堂的老板,我可以用Coze创建一个在线客服,让它和客户对话,并试图引导用户留下姓名和联系方式,这就需要一个类似于数据库的记忆能力。
这样配置后,一旦客户在对话中留下联系方式,我们的Bot就会自动将其存入预先设置的数据库中:
其他能力
对于客服类Bot,语音能力是非常重要的,在Coze中可以支持语音通话,还有多种口音供选择,个人觉得这是很方便的一个支持能力。
发布到订阅号
Coze可以支持发布到多个平台,未来可能真的会有Agent Store的概念。不过,我目前最喜欢的还是可以直接发布到微信订阅号,这样大家在给我回复时,不只是有冷冰冰的自动回复,而是有情绪价值的回复,for all of you!
小结
本文简单介绍了Coze(扣子)这个AI应用开发平台的主要功能,通过我所学习实践的一些DEMO来了解一下在AI Agent开发中涉及到一些核心概念如工作流、图像流、记忆能力、知识库等等,相信会对大家在今后的AI Agent开发实践中有所帮助。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓