快速体验开源项目 Qwen2.5,提升工作效率的强大助手!

探索 Qwen2.5:强大的大语言模型

在当今快速发展的人工智能领域,大语言模型(LLM)已成为自然语言处理技术的基石。Qwen2.5,作为阿里云Qwen团队最新推出的语言模型系列,凭借其卓越的技术能力和多样的应用场景,正在引起越来越多开发者的关注。

Qwen2.5 的特点与亮点

Qwen2.5是一个密集的、易于使用的编码器-解码器语言模型,支持多达0.5B1.5B3B7B14B32B72B不同的模型大小,并提供基础和指令两种变体。其主要特点包括:

  • 大规模预训练:Qwen2.5在最新的大规模数据集中进行了预训练,涵盖了高达18T的标记,提供了丰富的知识基础。

  • 显著的指令跟随能力:在理解用户指令并生成长文本(超过8K个标记)方面有显著提升,尤其是在处理结构化数据(如表格)和生成结构化输出(如JSON格式)方面。

  • 高达128K的上下文长度支持:在进行大规模语言处理时,可以更好地处理复杂的对话和输入。

  • 多语言支持:支持超过29种语言,包括中文、英文、法文、西班牙文、德文等,为全球用户提供无缝的使用体验。

应用场景

Qwen2.5的强大能力使其在多个领域内得到了广泛应用:

  1. 聊天机器人:凭借其适应性强的文本生成能力,Qwen2.5能够为客户提供更加人性化的交互体验。

  2. 内容创作:无论是撰写文章、编写报告还是生成创意内容,Qwen2.5都可以高效地产生高质量的文本。

  3. 教育与学习:可以用于编写个性化的学习材料,帮助学生更好地理解复杂的知识点。

  4. 数据分析:能够帮助企业从大量非结构化数据中提取有价值的信息,支持决策制定。

如何使用 Qwen2.5

1. 通过 Hugging Face Transformers

以下是使用transformers库调用Qwen2.5的示例代码:

from transformers import AutoModelForCausalLM, AutoTokenizer  
  
model_name = "Qwen/Qwen2.5-7B-Instruct"  
  
model = AutoModelForCausalLM.from_pretrained(  
    model_name,  
    torch_dtype="auto",  
    device_map="auto"  
)  
tokenizer = AutoTokenizer.from_pretrained(model_name)  
  
prompt = "给我介绍一下大型语言模型。"  
messages = [  
    {"role": "system", "content": "你是Qwen,由阿里云创建。你是一个有用的助手。"},  
    {"role": "user", "content": prompt}  
]  
text = tokenizer.apply_chat_template(  
    messages,  
    tokenize=False,  
    add_generation_prompt=True  
)  
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)  
  
generated_ids = model.generate(  
    **model_inputs,  
    max_new_tokens=512  
)  
generated_ids = [  
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)  
]  
  
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]  
print(response)  

这一段代码展示了如何轻松集成Qwen2.5到你的应用中,为你提供强大的对话和文本生成能力。

2. 本地运行模型

使用 Ollama

安装完Ollama后,可以使用以下命令启动服务:

ollama serve  

随后可以通过以下命令拉取模型检查点并运行相应的模型:

ollama run qwen2.5:7b  

3. 部署使用

Qwen2.5支持多种推理框架的部署,下面是使用vLLM的简单示例:

vllm serve Qwen/Qwen2.5-7B-Instruct  

在服务启动后,可以通过调用API进行聊天:

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{  
    "model": "Qwen/Qwen2.5-7B-Instruct",  
    "messages": [  
        {"role": "system", "content": "你是Qwen,由阿里云创建。你是一个有用的助手。"},  
        {"role": "user", "content": "告诉我一些关于大型语言模型的事。"}  
    ],  
    "temperature": 0.7,  
    "top_p": 0.8,  
    "repetition_penalty": 1.05,  
    "max_tokens": 512  
}'  

4. 量化模型

对于想要优化模型性能的用户,可以使用GPTQAWQ等量化模型,增强推理速度并减少内存占用。

性能评估

Qwen2.5的性能经过多方评估,表现优异。详细评估结果可参考官方博客。在GPU内存和通量方面的要求,可以查看文档以获取相关信息。

结论

Qwen2.5是一个非常强大的工具,为开发者提供了构建智能应用程序的基础。无论是聊天机器人、内容生成还是数据分析,Qwen2.5都能够满足您的需求,助力提升工作效率。

同类项目介绍

在人工智能和自然语言处理的领域,还有一些知名的同类项目。比如:

  1. GPT-3:由OpenAI开发的生成预训练变换器,能够生成多种内容。

  2. BERT:由Google开发,专注于理解自然语言的上下文。

  3. T5 (Text-to-Text Transfer Transformer):将所有文本任务视为文本到文本的转换,以提高多任务的表现能力。

这些项目各有特点,但Qwen2.5凭借其简单易用的特性和灵活性,确实为开发者们提供了一个新的选择,值得进一步探索和应用。

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

五、AI产品经理大模型教程

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

### 如何部署 Qwen2.5-VL 模型 #### 修改 `web_demo_mm.py` 文件中的模型加载路径 为了成功部署 Qwen2.5-VL 模型,在 git 下载的 Qwen2.5-VL 目录下的 `web_demo_mm.py` 文件中有两处需要修改。第一处涉及修改模型加载的路径[^1]。 ```python model_path = "/path/to/your/Qwen2.5-VL/model" ``` 此代码片段展示了如何指定自定义路径来加载预训练模型,确保替换 `/path/to/your/Qwen2.5-VL/model` 为实际存储位置。 #### 使用 vLLM 运行 Qwen 大模型 对于希望利用高性能推理引擎的情况,可以参考官方文档说明使用 vLLM 来运行 Qwen 大模型[^2]。这不仅提高了效率还简化了操作流程。具体步骤可访问链接获取最新指导:[使用vLLM运行Qwen大模型](https://qwen.readthedocs.io/en/latest/deployment/vllm.html) #### 安装依赖项配置 在安装过程中遇到网络问题或其他原因导致下载速度慢的情况下,可以在 pip 配置文件中加入清华大学开源软件镜像站作为默认索引源以加速包管理器的工作[^3]: ```ini [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple ``` 上述设置能够有效提升国内用户的开发体验并加快环境搭建过程。 #### 关于更多详细的部署教程 针对想要深入了解整个部署过程以及解决可能出现的问题,建议查阅阿里云发布的《阿里最新开源模型Qwen2.5-VL本地部署教程》。这份资料提供了从准备到完成部署的一系列详尽指引,并附带实例帮助读者更好地理解和实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值