探索 Qwen2.5:强大的大语言模型
在当今快速发展的人工智能领域,大语言模型(LLM)已成为自然语言处理技术的基石。Qwen2.5,作为阿里云Qwen团队最新推出的语言模型系列,凭借其卓越的技术能力和多样的应用场景,正在引起越来越多开发者的关注。
Qwen2.5 的特点与亮点
Qwen2.5是一个密集的、易于使用的编码器-解码器语言模型,支持多达0.5B、1.5B、3B、7B、14B、32B和72B不同的模型大小,并提供基础和指令两种变体。其主要特点包括:
-
大规模预训练:Qwen2.5在最新的大规模数据集中进行了预训练,涵盖了高达18T的标记,提供了丰富的知识基础。
-
显著的指令跟随能力:在理解用户指令并生成长文本(超过8K个标记)方面有显著提升,尤其是在处理结构化数据(如表格)和生成结构化输出(如JSON格式)方面。
-
高达128K的上下文长度支持:在进行大规模语言处理时,可以更好地处理复杂的对话和输入。
-
多语言支持:支持超过29种语言,包括中文、英文、法文、西班牙文、德文等,为全球用户提供无缝的使用体验。
应用场景
Qwen2.5的强大能力使其在多个领域内得到了广泛应用:
-
聊天机器人:凭借其适应性强的文本生成能力,Qwen2.5能够为客户提供更加人性化的交互体验。
-
内容创作:无论是撰写文章、编写报告还是生成创意内容,Qwen2.5都可以高效地产生高质量的文本。
-
教育与学习:可以用于编写个性化的学习材料,帮助学生更好地理解复杂的知识点。
-
数据分析:能够帮助企业从大量非结构化数据中提取有价值的信息,支持决策制定。
如何使用 Qwen2.5
1. 通过 Hugging Face Transformers
以下是使用transformers
库调用Qwen2.5的示例代码:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen2.5-7B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "给我介绍一下大型语言模型。"
messages = [
{"role": "system", "content": "你是Qwen,由阿里云创建。你是一个有用的助手。"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
这一段代码展示了如何轻松集成Qwen2.5到你的应用中,为你提供强大的对话和文本生成能力。
2. 本地运行模型
使用 Ollama
安装完Ollama后,可以使用以下命令启动服务:
ollama serve
随后可以通过以下命令拉取模型检查点并运行相应的模型:
ollama run qwen2.5:7b
3. 部署使用
Qwen2.5支持多种推理框架的部署,下面是使用vLLM
的简单示例:
vllm serve Qwen/Qwen2.5-7B-Instruct
在服务启动后,可以通过调用API进行聊天:
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
"model": "Qwen/Qwen2.5-7B-Instruct",
"messages": [
{"role": "system", "content": "你是Qwen,由阿里云创建。你是一个有用的助手。"},
{"role": "user", "content": "告诉我一些关于大型语言模型的事。"}
],
"temperature": 0.7,
"top_p": 0.8,
"repetition_penalty": 1.05,
"max_tokens": 512
}'
4. 量化模型
对于想要优化模型性能的用户,可以使用GPTQ
和AWQ
等量化模型,增强推理速度并减少内存占用。
性能评估
Qwen2.5的性能经过多方评估,表现优异。详细评估结果可参考官方博客。在GPU内存和通量方面的要求,可以查看文档以获取相关信息。
结论
Qwen2.5是一个非常强大的工具,为开发者提供了构建智能应用程序的基础。无论是聊天机器人、内容生成还是数据分析,Qwen2.5都能够满足您的需求,助力提升工作效率。
同类项目介绍
在人工智能和自然语言处理的领域,还有一些知名的同类项目。比如:
-
GPT-3:由OpenAI开发的生成预训练变换器,能够生成多种内容。
-
BERT:由Google开发,专注于理解自然语言的上下文。
-
T5 (Text-to-Text Transfer Transformer):将所有文本任务视为文本到文本的转换,以提高多任务的表现能力。
这些项目各有特点,但Qwen2.5凭借其简单易用的特性和灵活性,确实为开发者们提供了一个新的选择,值得进一步探索和应用。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓