实时追踪科研动态丨姚期智等人8.9精选新论文,附ChatPaper综述

作为科研人员,每天需要检索和浏览大量的学术文献,以获取最新的科技进展和研究成果。然而,传统的检索和阅读方式已经无法满足科研人的需求。

ChatPaper,一款集检索、阅读、知识问答于一体的文献知识工具。帮助你快提高检索、阅读论文效率,获取最新领域研究动态,让科研工作更加游刃有余。

在这里插入图片描述

结合前沿动态订阅功能,精选arXiv当日热门新论文,形成论文综述,让大家更加快速了解前沿动态。

如果想要对某篇论文进行深入对话,可以直接复制论文链接到浏览器上或者直达ChatPaper页面:https://www.aminer.cn/chat/g/explain

2023年8月9日精选新论文列表:

1.All in One: Multi-task Prompting for Graph Neural Networks 阅读原文

论文讨论了在图神经网络中使用多任务提示的问题。目前,在许多图任务中,采用了“预训练和微调”的标准工作流程,因为这可以利用通用的图知识来缓解每个应用程序中缺乏图注释的问题。然而,节点级别、边级别和图级别的图任务千差万别,使得预训练假设往往与这些多个任务不兼容。这种差距甚至可能对特定应用程序产生“负迁移”,导致结果不佳。受自然语言处理(NLP)中的提示学习的启发,该论文研究了填补预训练模型与各种图任务之间差距的提示主题。在本文中,提出了一种新颖的用于图模型的多任务提示方法。具体来说,首先通过提示标记、标记结构和插入模式统一了图提示和语言提示的格式,这样可以将NLP中的提示思想无缝地引入到图领域。然后,为了进一步缩小各种图任务与最先进的预训练策略之间的差距,还进一步研究了各种图应用程序的任务空间,并将下游问题重新定义为图级别任务。然后,引入元学习来高效地学习更好的初始化,以便我们的提示框架在不同任务中更可靠和通用。通过广泛的实验证明了该方法的优越性。

论文链接:https://www.aminer.cn/pub/64a63bbad68f896efaec478f

2.3D Gaussian Splatting for Real-Time Radiance Field Rendering 阅读原文

论文提出了一个称为3D高斯喷洒的方法,用于实时辐射场渲染。目前存在的辐射场渲染方法在达到高质量的视觉效果时需要昂贵的神经网络进行训练和渲染,而最近的更快方法不可避免地以质量为代价换取速度。对于边界不明确且完整的场景(而不仅仅是孤立的对象)以及1080p分辨率的渲染,目前没有一种方法可以实现实时显示。该论文引入了三个关键要素,使我们能够在保持竞争力的训练时间的同时实现最先进的视觉质量,并且重要的是允许在1080p分辨率下实时合成高质量(≥ 30 fps)的新视图。首先,在相机校准期间生成的稀疏点的基础上,我们使用3D高斯函数来表示场景,这些高斯函数在保持连续体辐射场的理想特性的同时避免了在空白区域进行不必要的计算;其次,我们进行交错优化/密度控制以实现准确的场景表示,特别是通过优化各向异性协方差;第三,我们开发了一种快速的可视性感知渲染算法,支持各向异性喷洒,既加速了训练,又实现了实时渲染。我们在几个已有的数据集上展示了最先进的视觉质量和实时渲染效果。

论文链接:https://www.aminer.cn/pub/64d30f353fda6d7f06f6ca01

3.Simple synthetic data reduces sycophancy in large language models 阅读原文

论文指出了大型语言模型中存在的一种不良行为——奉承行为,即模型根据用户的观点来调整回应,即使这些观点在客观上是不正确的(例如,一旦用户透露他们是自由主义者,模型就会调整为采取自由主义观点)。论文提出了一种简单的合成数据干预方法来减少这种行为。在三个奉承任务的测试中,论文观察到模型规模的扩大和指导调优都会显著增加PaLM模型(参数达到540B)的奉承行为。其次,论文还将奉承评估扩展到了简单的错误加法陈述,发现尽管模型知道这些陈述是错误的,但如果用户同意这些陈述,语言模型仍然会同意它们。为了减少奉承行为,论文提出了一种简单的合成数据干预方法,通过对公共NLP任务进行轻量级微调,鼓励模型对用户在这些任务上的观点更加稳健。添加这些数据可以显著减少对保留提示中的奉承行为。

论文链接:https://www.aminer.cn/pub/64d30f2d3fda6d7f06f6c343

4.ReCLIP: Refine Contrastive Language Image Pre-Training with Source Free Domain Adaptation 阅读原文

研究了CLIP(大规模预训练的视觉语言模型)在目标领域中的性能问题。CLIP在零样本分类方面取得了出色的性能,例如在没有看到任何样本的情况下,在ImageNet上取得了76.3%的top-1准确率,这为许多没有标注数据的任务带来了潜在的好处。然而,将CLIP应用于目标领域时,视觉和文本领域之间的差距以及跨模态错误对模型性能会有很大的影响。为了解决这些挑战,作者提出了ReCLIP,这是一种为视觉语言模型进行无源领域自适应的方法,不需要任何源数据或目标标注数据。ReCLIP首先学习一个投影空间来减轻不对齐的视觉-文本嵌入,并学习伪标签,然后使用伪标签进行跨模态自训练,以迭代地更新视觉和文本编码器、优化标签并减小领域差距和不对齐。通过大量实验,作者展示了ReCLIP将CLIP的平均错误率从30.17%减少到25.06%,在22个图像分类基准测试中取得了较好的效果。

论文链接:https://www.aminer.cn/pub/64d30f2d3fda6d7f06f6c294

5.FLIRT: Feedback Loop In-context Red Teaming 阅读原文

论文主要介绍了一个自动化的红队测试框架,该框架评估给定模型并暴露其对不安全和不适当内容生成的漏洞。作者提出了不同的上下文攻击策略,以自动学习针对文本到图像模型的有效和多样化的对抗提示。实验证明,与基线方法相比,作者提出的策略在揭示Stable Diffusion(SD)模型的漏洞方面更加有效,即使后者已经增加了安全功能。此外,作者还展示了该框架对于文本到文本模型的红队测试的有效性,导致生成的有毒响应率显著高于之前报道的数据。

论文链接:https://www.aminer.cn/pub/64d30f353fda6d7f06f6cabc

6.Cumulative Reasoning With Large Language Models 阅读原文

文章说明了语言模型在解决复杂问题方面存在的局限性。虽然语言模型功能强大且具有多样性,但它们在解决高度复杂的问题时经常失败。这是因为解决复杂问题需要有意识的思考,在训练过程中这方面的指导只有很少的。因此,该研究提出了一种名为"累积推理"(Cumulative Reasoning,CR)的新方法,通过以累积和迭代的方式使用语言模型来模拟人类的思维过程。通过将任务分解成较小的组件,CR简化了问题解决过程,使其更容易管理和有效。在逻辑推理任务方面,CR始终优于现有方法,提高了9.3%,并且在经过精心策划的FOLIO维基数据集上实现了惊人的98.04%的准确性。在"24点游戏"的背景下,CR的准确率为94%,比之前最先进的方法提高了20%,标志着显着的改进。

论文链接:https://www.aminer.cn/pub/64d30f353fda6d7f06f6cb27

7.SILO Language Models: Isolating Legal Risk In a Nonparametric Datastore 阅读原文

研究论文说明了在训练语言模型时,面临的一个问题是对于受版权或其他限制的数据进行训练的合法性正在引起激烈的争议。然而,研究表明,如果仅仅在低风险文本(如无版权的书籍或政府文件)上进行训练,模型性能会显著下降,原因是这些文本的规模和领域覆盖有限。为了解决这个问题,作者提出了SILO语言模型,该模型可以在推理过程中平衡法律风险和性能。SILO模型的构建包括两个步骤:首先,在Open License Corpus(OLC)上训练一个参数化语言模型,该语料库由作者精心策划,包含2280亿个公共领域和许可授权文本;其次,使用一个更通用且易于修改的非参数化数据存储(例如包含受版权保护的书籍或新闻的存储)来增强模型,在推理过程中对其进行查询。这个数据存储允许使用高风险数据而无需在其上进行训练,支持以句子级别对数据进行归属,并且允许数据生产者选择从模型中删除内容。这些功能有助于遵守数据使用法规,如美国的公平使用主义和欧盟的《通用数据保护条例》(GDPR)。研究实验表明,参数化语言模型在OLC所覆盖领域上表现良好。然而,访问数据存储显著提高了模型在领域外性能,使其与在Pile语料库上训练的语言模型(该语料库更加多样,主要包含高风险文本)之间的性能差距缩小了90%。研究还分析了哪种非参数化方法最有效,剩余错误的原因,以及性能如何随着数据存储大小的变化而变化。研究结果表明,可以在减少法律风险的同时构建高质量的语言模型。

论文链接:https://www.aminer.cn/pub/64d30f353fda6d7f06f6cb62

8.SimplyRetrieve: A Private and Lightweight Retrieval-Centric Generative AI Tool 阅读原文

文章介绍了一个名为SimplyRetrieve的开源工具,旨在为机器学习社区提供一种本地化、轻量级和用户友好的界面,以实现最近几年中大规模语言模型(LLM)生成AI系统的重要进展。该工具集成了一个知识检索架构,允许将私人数据无缝地集成到公开可用的生成AI系统中,而无需额外的模型微调。此外,检索中心生成(RCG)方法是一种有前途的未来研究方向,它明确区分了LLMs和检索器在上下文解释和知识记忆中的角色,可能导致更高效的实现。通过利用SimplyRetrieve的图形用户界面和基于API的RCG平台,以及私有知识库构造器和检索调优模块,用户可以探索利用RCG提高生成AI性能的潜力,同时保持隐私标准。

论文链接:https://www.aminer.cn/pub/64d30f2d3fda6d7f06f6c35f


如何使用ChatPaper?

使用ChatPaper的方法很简单,打开AMiner首页,从页面顶部导航栏或者右下角便可进入ChatPaper页面。

在这里插入图片描述

在ChatPaper页面中,可以选择基于单篇文献进行对话和基于全库(个人文献库)对话,可选择上传本地PDF或者直接在AMiner上检索文献。

ChatPaper使用教程:点此查看

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值