【Python】使用Pandas对数值进行分箱操作的4种方法


分箱是一种常见的数据预处理技术,有时也被称为 分桶离散化,可用于将连续数据的间隔分组到“箱”或“桶”中。在本文中将介绍如何使用 Python的Pandas库中的4种方法对数值进行分箱。

首先,创建示例数据框

import pandas as pd
import numpy as np

def create_df():
  df = pd.DataFrame({'score': np.random.randint(0,101,1000)})
  return df

df = create_df()
df.head()

df
上面数据表示1000名学生的0到100分的考试分数。而我们的任务是将数字分数分为值“A”、“B”和“C”的等级,其中“A”是最好的,“C”是最差的。

方法1:between & loc

Pandas.between方法返回一个包含True的布尔向量,用来对应的Series元素位于边界值left和right之间。其中有三个参数“

  • left:左边界
  • right:右边界
  • inclusive:要包括哪个边界。可接受的值为 {“both”、“neither”、“left”、“right”}。

我们根据以下间隔规则将学生的分数分为等级:

  • A: (80, 100]
  • B: (50, 80]
  • C: [0, 50]

其中方括号[和圆括号)分别表示边界值是包含的和不包含的。我们需要确定哪个分数在感兴趣的区间之间,并为其分配相应的等级值。注意看下面的不同的参数表示是否包含边界

df.loc[df['score'].between(0, 50, 'both'), 'grade'] = 'C'
df.loc[df['score'].between(50, 80, 'right'), 'grade'] = 'B'
df.loc[df['score'].between(80, 100, 'right'), 'grade'] = 'A'
df.head()

between
以下是每个分数区间的人数统计:
value_counts
注意:此方法需要为每个bin编写处理的代码,因此它仅适用于bin很少的情况

方法2:cut

使用cut也可以将值分类为离散的间隔。此函数对于从连续变量到分类变量很有用。cut的参数如下:

  • x:要分箱的数组。必须是一维的。
  • bins:标量序列:定义允许非均匀宽度的 bin 边缘。
  • labels:指定返回的 bin 的标签。必须与上面的 bins 参数长度相同。
  • include_lowest: (bool) 第一个区间是否应该是左包含的。

代码如下:

bins = [0, 50, 80, 100]
labels = ['C', 'B', 'A']
df['grade'] = pd.cut(x = df['score'], bins = bins, labels = labels, include_lowest = True)
df.head()

cut
这样就创建一个包含bin边界值的bins列表和一个包含相应bin标签的标签列表。
查看每个区段的人数:
value_counts

方法3:qcut

qcut可以根据排名或基于样本分位数将变量离散为大小相等的桶。qcut的参数如下:

  • x:要分箱的输入数组。必须是一维的。
  • q:分位数。10 表示十分位数,4 表示四分位数等。也可以是交替排列的分位数,例如[0, .25, .5, .75, 1.] 四分位数。
  • labels:指定bin的标签。必须与生成的bin长度相同。
  • retbins: (bool) 是否返回 (bins, labels)。

在前两个示例中,为每个级别定义了分数间隔,这里使得每个级别的学生数量不均匀。在下面的示例中,将尝试将学生分类为3个具有相等(大约)数量的分数等级。示例中有1000名学生,因此每个分箱应该有大约333名学生。

df['grade'],cut_bin = pd.qcut(df['score'], q=3, labels=['C', 'B', 'A'], retbins=True)
df.head()

pcut
如果retbins设置为 True, 则会返回 bin 边界:
retbins
可以看到分数间隔如下:

  • C:[0, 36]
  • B:(36, 68]
  • A:(68, 100]

再次使用.value_counts()检查每个等级有多少学生。理想情况下,每个箱应该有大约 333 名学生。
value_counts

方法4:value_counts

虽然 pandas的.value_counts通常用于计算系列中唯一值的数量,但它也可用于使用bins参数将值分组到半开箱中。
半开箱
需要强调的是:

  • 默认情况下,.value_counts按值的降序对返回的系列进行排序。将sort设置为False以按其索引的升序对系列进行排序。
  • 返回值的第一列是series索引,是指每个 bin 的区间范围,其中方括号[和圆括号)分别表示边界值是包含的和不包含的。返回的第二列是series的值,表示每个bin中有多少条记录。
  • 与.qcut 不同,每个bin中的记录数不一定相同(大约)。.value_counts不会将相同数量的记录分配到相同的类别中,而是根据最高和最低分数将分数范围分成3个相等的部分。分数的最小值为0,最大值为100,因此这3个部分中的每一个都大约在33.33范围内。这也解释了为什么bin的边界是 33.33 的倍数。

还可以通过传入边界列表来定义bin边界:
传入边界
这里的输出结果与方法1和2的结果相同。

补充材料

  1. https://colab.research.google.com/drive/1yWTl2OzOnxG0jCdmeIN8nV1MoX3KQQ_1?usp=sharing
Pandas分箱是将一系列连续的数值数据划分为离散的“箱子”或“区间”的过程。这种离散化的过程可以用于数据的可视化、数据分析、数据挖掘等应用场景。 Pandas提供了两种分箱方法,分别是cut()和qcut(): 1. cut()方法:可以指定分箱的边界值,也可以指定分箱的数量。 2. qcut()方法:指定分箱的数量,每个分箱中包含的数据数量尽量相等。 下面是一个使用cut()方法进行分箱的示例代码: ```python import pandas as pd import numpy as np # 生成一组随机数据 data = pd.DataFrame(np.random.randn(1000), columns=['value']) # 将数据分成5个等宽的区间 data['value_cut'] = pd.cut(data['value'], 5) # 输出每个区间的数量 print(data['value_cut'].value_counts()) ``` 输出结果如下: ``` (-2.141, -1.125] 169 (-1.125, -0.111] 398 (-0.111, 0.902] 316 (0.902, 1.916] 103 (1.916, 2.93] 14 Name: value_cut, dtype: int64 ``` 上述代码中,我们将data中的value列分成了5个等宽的区间,并将分箱后的结果存放在value_cut列中。最后使用value_cut列的value_counts()方法统计每个区间的数量。 下面是一个使用qcut()方法进行分箱的示例代码: ```python import pandas as pd import numpy as np # 生成一组随机数据 data = pd.DataFrame(np.random.randn(1000), columns=['value']) # 将数据分成5个等频的区间 data['value_qcut'] = pd.qcut(data['value'], 5) # 输出每个区间的数量 print(data['value_qcut'].value_counts()) ``` 输出结果如下: ``` (-3.032, -0.686] 200 (-0.686, -0.175] 200 (-0.175, 0.43] 200 (0.43, 0.988] 200 (0.988, 3.141] 200 Name: value_qcut, dtype: int64 ``` 上述代码中,我们将data中的value列分成了5个等频的区间,并将分箱后的结果存放在value_qcut列中。最后使用value_qcut列的value_counts()方法统计每个区间的数量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

镰刀韭菜

看在我不断努力的份上,支持我吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值