通过将RAG与知识图谱相结合的知识增强生成(KAG)
知识增强型生成结合了知识图谱和语言模型,以提供准确、逻辑且特定领域的AI解决方案。
知识增强型生成(Knowledge Augmented Generation,简称KAG)的出现标志着人工智能领域的一个关键进步,特别是在提升大语言模型(Large Language Models,简称LLMs)的能力方面。KAG将知识图谱(Knowledge Graphs,简称KGs)的结构化推理能力与语言模型的通用性相结合,形成一个能够产生连贯、逻辑且符合特定领域的输出的框架。这一创新在医疗保健、法律和行政服务等专业领域尤其有价值,在这些领域中,精确性和上下文理解至关重要。
1. 知识增强型生成(KAG)的需要
传统的检索增强生成(RAG)方法显著提高了语言模型对领域特定知识的检索能力。然而,这些系统面临几个挑战:
- 缺乏逻辑推理:RAG高度依赖于文本相似性,往往忽略了知识元素之间的深层逻辑联系。
- 在数值和时间上下文中的弱点:涉及计算、时间关系或分析推理的任务超出了标准RAG框架的能力范围。
- 碎片化的知识:由于基于文本的检索系统的固有噪声,检索到的知识往往是不完整或缺乏连贯性的。
为了应对这些不足,KAG通过将KG的推理优势与LLM的语言理解能力相结合而开发出来。