四元数基础

1 四元数

实数复数四元数(超复数)
λ 0 \lambda_0 λ0 λ 0 + λ 1 i \lambda_0+\lambda_1i λ0+λ1i λ 0 + λ 1 i + λ 2 j + λ 3 k \lambda_0+\lambda_1i+\lambda_2j+\lambda_3k λ0+λ1i+λ2j+λ3k
实部 λ 0 \lambda_0 λ0 λ 0 \lambda_0 λ0 λ 0 \lambda_0 λ0
虚部0 λ 1 i \lambda_1i λ1i λ 1 i + λ 2 j + λ 3 k \lambda_1i+\lambda_2j+\lambda_3k λ1i+λ2j+λ3k
四元数 Λ = λ 0 + λ 1 i + λ 2 j + λ 3 k \Lambda=\lambda _{0}+\lambda_1i+\lambda_2j+\lambda_3k Λ=λ0+λ1i+λ2j+λ3k
单元 1 = 1 + 0 i + 0 j + 0 k 1=1+0i+0j+0k 1=1+0i+0j+0k
零元 0 = 0 + 0 i + 0 j + 0 k 0=0+0i+0j+0k 0=0+0i+0j+0k
负元 − Λ = − λ 0 − λ 1 i − λ 2 j − λ 3 k -\Lambda=-\lambda _{0}-\lambda _{1}i-\lambda_2j-\lambda_3k Λ=λ0λ1iλ2jλ3k
共轭元 Λ ∗ = λ 0 − λ 1 i − λ 2 j − λ 3 k \Lambda^{\ast}=\lambda _{0}-\lambda_1i-\lambda_2j-\lambda_3k Λ=λ0λ1iλ2jλ3k
逆元 Λ − 1 = 1 λ 0 + λ 1 i + λ 2 j + λ 3 k = Λ ∗ λ 0 2 + λ 1 2 + λ 2 2 + λ 3 2 = Λ ∗ ∣ ∣ Λ ∣ ∣ \Lambda ^{-1}=\frac{1}{\lambda_{0}+\lambda_1i+\lambda _{2}j+\lambda _3k}=\frac{\Lambda ^{\ast }}{\lambda_{0}^{2}+\lambda _{1}^{2}+\lambda _{2}^{2}+\lambda_3 ^{2}}=\frac{\Lambda ^{\ast }}{||\Lambda||} Λ1=λ0+λ1i+λ2j+λ3k1=λ02+λ12+λ22+λ32Λ=∣∣Λ∣∣Λ
范数或 N = ∣ ∣ Λ ∣ ∣ = λ 0 2 + λ 1 2 + λ 2 2 + λ 3 2 ∣ ∣ Λ ∣ ∣ = Λ ∘ Λ ∗ = λ 0 2 + λ 1 2 + λ 2 2 + λ 3 2 N=\sqrt{||\Lambda||}=\sqrt{\lambda^2_0+\lambda^2_1+\lambda^2_2+\lambda^2_3} \\ ||\Lambda||=\Lambda \circ \Lambda^{\ast}=\lambda^2_0+\lambda^2_1+\lambda^2_2+\lambda^2_3 N=∣∣Λ∣∣ =λ02+λ12+λ22+λ32 ∣∣Λ∣∣=ΛΛ=λ02+λ12+λ22+λ32
虚数单位乘法(直角坐标系-右手定则) i ∘ i = j ∘ j = k ∘ k = − 1 i ∘ j = k = − j ∘ i k ∘ i = j = − i ∘ k j ∘ k = i = − k ∘ j i\circ i=j\circ j=k\circ k=-1 \\ i\circ j=k=-j\circ i\\ k\circ i=j=-i\circ k\\ j\circ k=i=-k\circ j ii=jj=kk=1ij=k=jiki=j=ikjk=i=kj
四元数 P = p 0 + p 1 i + p 2 j + p 3 k   =   [ p 0 p 1 p 2 p 3 ] T Q = q 0 + q 1 i + q 2 j + q 3 k   =   [ q 0 q 1 q 2 q 3 ] T \boldsymbol{P}=p_{0}+p_{1}i+p_{2}j+p_3k\ =\ \begin{bmatrix} p_{0} & p_{1} & p_{2} & p_{3} \end{bmatrix}^{\rm T} \\ \boldsymbol{Q}=q_{0}+q_{1}i+q_{2}j+q_3k\ =\ \begin{bmatrix} q_{0} & q_{1} & q_{2} & q_{3} \end{bmatrix}^{\rm T} P=p0+p1i+p2j+p3k = [p0p1p2p3]TQ=q0+q1i+q2j+q3k = [q0q1q2q3]T
四元数相等 P = Q ⇔ p i = q i , i = 0 , 1 , 2 , 3 \boldsymbol{P}=\boldsymbol{Q}\Leftrightarrow p_{i}=q_{i},i=0,1,2,3 P=Qpi=qi,i=0,1,2,3
四元数和差 P ± Q = ( p 0 ± q 0 ) + ( p 1 ± q 1 ) i + ( p 2 ± q 2 ) j + ( p 3 ± q 3 ) k \boldsymbol{P\pm Q}=(p_0\pm q_0)+(p_1\pm q_1)i+(p_2\pm q_2)j+(p_3\pm q_3)k P±Q=(p0±q0)+(p1±q1)i+(p2±q2)j+(p3±q3)k
四元数标量乘 a P = a p 0 + a p 1 i + a p 2 j + a p 3 k a\boldsymbol{P}=ap_{0}+ap_1i+ap_{2}j+ap_{3}k aP=ap0+ap1i+ap2j+ap3k
四元数微分 Q ˙ = q 0 ˙ + q 1 ˙ i + q 2 ˙ j + q 3 ˙ k 若 Λ = P ∘ Q , 则 Λ ˙ = P ˙ ∘ Q + P ∘ Q ˙ \dot{\boldsymbol{Q}}=\dot{q_{0}}+\dot{q_{1}}i+\dot{q_{2}}j+\dot{q_3}k \\ 若\boldsymbol{\Lambda}=\boldsymbol{P}\circ\boldsymbol{Q},则\dot{\boldsymbol{\Lambda}}=\dot{\boldsymbol{P}}\circ\boldsymbol{Q}+\boldsymbol{P}\circ\dot{\boldsymbol{Q}} Q˙=q0˙+q1˙i+q2˙j+q3˙kΛ=PQ,Λ˙=P˙Q+PQ˙

2 四元数乘法

P ∘ Q = ( p 0 + p ) ∘ ( q 0 + q ) = ( p 0 + p 1 i + p 2 j + p 3 k ) ∘ ( q 0 + q 1 i + q 2 j + q 3 k ) = [ p 0 q 0 − ( p 1 q 1 + p 2 q 2 + p 3 q 3 ) ] + [ p 1 q 0 + p 0 q 1 + ( p 2 q 3 − p 3 q 2 ) ] i + [ p 2 q 0 + p 0 q 2 + ( p 3 q 1 − p 1 q 3 ) ] j + [ p 3 q 0 + p 0 q 3 + ( p 1 q 2 − p 2 q 1 ) ] k = [ p 0 q 0 − ( p 1 q 1 + p 2 q 2 + p 3 q 3 ) ] + ( p 1 i + p 2 j + p 3 k ) q 0 + ( q 1 i + q 2 j + q 3 k ) p 0 + [ ( p 2 q 3 − p 3 q 2 ) i + ( p 3 q 1 − p 1 q 3 ) j + ( p 1 q 2 − p 2 q 1 ) k ] \boldsymbol{P}\circ\boldsymbol{Q}=(p_{0}+\boldsymbol{p}) \circ(q_{0}+\boldsymbol{q}) \\ =(p_{0}+p_{1}i+p_{2}j+p_{3}k) \circ (q_{0}+q_{1}i+q_{2}j+q_3k) \\ =[p_{0}q_{0}-(p_{1}q_1+p_{2}q_{2}+p_{3}q_{3})] + \\ [p_{1}q_{0}+p_0q_1 + (p_{2}q_{3}-p_{3}q_{2})]i + \\ [p_{2}q_0+p_0q_{2}+(p_{3}q_{1}-p_{1}q_{3})] j + \\ [p_{3}q_{0}+p_0q_3+(p_{1}q_{2}-p_{2}q_{1}) ] k\\ =[p_{0}q_0-( p_{1}q_{1}+p_{2}q_{2}+p_{3}q_{3})] + \\ (p_{1}i+p_{2}j+p_{3}k)q_{0} + \\ (q_{1}i+q_{2}j+q_{3}k)p_{0} + \\ [(p_2q_3-p_3q_2)i+(p_3q_1-p_1q_3)j+(p_1q_2-p_2q_1)k] PQ=(p0+p)(q0+q)=(p0+p1i+p2j+p3k)(q0+q1i+q2j+q3k)=[p0q0(p1q1+p2q2+p3q3)]+[p1q0+p0q1+(p2q3p3q2)]i+[p2q0+p0q2+(p3q1p1q3)]j+[p3q0+p0q3+(p1q2p2q1)]k=[p0q0(p1q1+p2q2+p3q3)]+(p1i+p2j+p3k)q0+(q1i+q2j+q3k)p0+[(p2q3p3q2)i+(p3q1p1q3)j+(p1q2p2q1)k]

2.1 矢量运算表示

标量积矢量积
p ⋅ q = p 1 q 1 + p 2 q 2 + p 3 q 3 \boldsymbol{p}\cdot\boldsymbol{q}=p_{1}q_1+p_{2}q_{2}+p_{3}q_{3} pq=p1q1+p2q2+p3q3 p × q = ∣ i j k p 1 p 2 p 3 q 1 q 2 q 3 ∣ \boldsymbol{p}\times\boldsymbol{q} =\begin{vmatrix}i&j&k \\p_1&p_2&p_3 \\q_1&q_2&q_3\end{vmatrix} p×q= ip1q1jp2q2kp3q3

P ∘ Q = p 0 q 0 − p ⋅ q + p q 0 + q p 0 + p × q Q ∘ P = q 0 p 0 − q ⋅ p + q p 0 + p q 0 + q × p P ∘ Q ≠ Q ∘ P \boldsymbol{P}\circ\boldsymbol{Q}=p_0q_0-\boldsymbol{p}\cdot\boldsymbol{q}+\boldsymbol{p}q_{0}+\boldsymbol{q}p_{0}+\boldsymbol{p}\times\boldsymbol{q} \\ \boldsymbol{Q}\circ\boldsymbol{P}=q_0p_0-\boldsymbol{q}\cdot\boldsymbol{p}+\boldsymbol{q}p_{0}+\boldsymbol{p}q_{0}+\boldsymbol{q}\times\boldsymbol{p} \\ \boldsymbol{P}\circ \boldsymbol{Q} \neq \boldsymbol{Q}\circ \boldsymbol{P} PQ=p0q0pq+pq0+qp0+p×qQP=q0p0qp+qp0+pq0+q×pPQ=QP

2.2 矩阵表示

Λ   =   P ∘ Q   =   λ 0 + λ 1 i + λ 2 j + λ 3 k \Lambda \ =\ \boldsymbol{P}\circ\boldsymbol{Q} \ =\ \lambda_0+\lambda_1i+\lambda_2j+\lambda_3k Λ = PQ = λ0+λ1i+λ2j+λ3k
[ λ 0 λ 1 λ 2 λ 3 ]   =   [ p 0 − p 1 − p 2 − p 3 p 1 p 0 − p 3 p 2 p 2 p 3 p 0 − p 1 p 3 − p 2 p 1 p 0 ] [ q 0 q 1 q 2 q 3 ]   =   [ q 0 − q 1 − q 2 − q 3 q 1 q 0 q 3 − q 2 q 2 − q 3 q 0 q 1 q 3 q 2 − q 1 q 0 ] [ p 0 p 1 p 2 p 3 ] \begin{bmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix} \ =\ \begin{bmatrix} p_{0} & -p_{1} & -p_{2} & -p_3 \\ p_{1} & p_{0} & -p_3 & p_{2} \\ p_{2} & p_{3} & p_{0} & -p_1 \\ p_3 & -p_{2} & p_{1} & p_{0} \end{bmatrix} \begin{bmatrix} q_{0} \\ q_{1} \\ q_{2} \\ q_{3} \end{bmatrix} \\ \ =\ \begin{bmatrix} q_{0} & -q_{1} & -q_{2} & -q_3 \\ q_1 & q_0 & q_3 & -q_{2} \\ q_{2} & -q_3 & q_0 & q_{1} \\ q_{3} & q_{2} & -q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} p_{0} \\ p_{1} \\ p_{2} \\ p_{3} \end{bmatrix} \\ λ0λ1λ2λ3  =  p0p1p2p3p1p0p3p2p2p3p0p1p3p2p1p0 q0q1q2q3  =  q0q1q2q3q1q0q3q2q2q3q0q1q3q2q1q0 p0p1p2p3
V ( p )   =   [ p 0 − p 3 p 2 p 3 p 0 − p 1 − p 2 p 1 p 0 ] V(\boldsymbol{p}) \ =\ \begin{bmatrix} p_{0} & -p_{3} & p_{2} \\ p_{3} & p_{0} & -p_{1} \\ -p_{2} & p_{1} & p_{0} \end{bmatrix} V(p) =  p0p3p2p3p0p1p2p1p0

四元数连乘
Q ∘ P ∘ Λ   =   [ q 0 − q 1 − q 2 − q 3 q 1 q 0 − q 3 q 2 q 2 q 3 q 0 − q 1 q 3 − q 2 q 1 q 0 ] [ p 0 − p 1 − p 2 − p 3 p 1 p 0 − p 3 p 2 p 2 p 3 p 0 − p 1 p 3 − p 2 p 1 p 0 ] [ λ 0 λ 1 λ 2 λ 3 ] \boldsymbol{Q}\circ\boldsymbol{P}\circ\boldsymbol{\Lambda} \ =\ \begin{bmatrix} q_{0} & -q_{1} & -q_{2} & -q_3 \\ q_{1} & q_{0} & -q_3 & q_{2} \\ q_{2} & q_{3} & q_{0} & -q_1 \\ q_3 & -q_{2} & q_{1} & q_{0} \end{bmatrix} \begin{bmatrix} p_{0} & -p_{1} & -p_{2} & -p_3 \\ p_{1} & p_{0} & -p_3 & p_{2} \\ p_{2} & p_{3} & p_{0} & -p_1 \\ p_3 & -p_{2} & p_{1} & p_{0} \end{bmatrix} \begin{bmatrix} \lambda_{0} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{3} \end{bmatrix} QPΛ =  q0q1q2q3q1q0q3q2q2q3q0q1q3q2q1q0 p0p1p2p3p1p0p3p2p2p3p0p1p3p2p1p0 λ0λ1λ2λ3

3 四元数的除法

P 、 Q 、 Λ \boldsymbol{P}、\boldsymbol{Q}、\boldsymbol{\Lambda} PQΛ为三个四元数
Q ∘ Λ = P \boldsymbol{Q}\circ\boldsymbol{\Lambda}=\boldsymbol{P} QΛ=P,则 Λ = Q − 1 ∘ P \boldsymbol{\Lambda=\boldsymbol{Q}^{-1}\circ\boldsymbol{P}} Λ=Q1P称为左除
Λ ∘ Q = P \boldsymbol{\Lambda}\circ\boldsymbol{Q}=\boldsymbol{P} ΛQ=P,则 Λ = P ∘ Q − 1 \boldsymbol{\Lambda=\boldsymbol{P}\circ\boldsymbol{Q}^{-1}} Λ=PQ1称为右除
Q − 1 ∘ P ≠ P ∘ Q − 1 \boldsymbol{Q}^{-1}\circ\boldsymbol{P} \neq \boldsymbol{P}\circ\boldsymbol{Q}^{-1} Q1P=PQ1,左除和右除不等

4 规范化四元数

四元数 Λ = λ 0 + λ 1 i + λ 2 j + λ 3 k \boldsymbol{\Lambda} =\lambda _{0}+\lambda _{1}i+\lambda _{2}j+\lambda_3k Λ=λ0+λ1i+λ2j+λ3k的模为 N = λ 0 2 + λ 1 2 + λ 2 2 + λ 3 2 N=\sqrt{\lambda^2_0+\lambda^2_1+\lambda^2_2+\lambda^2_3} N=λ02+λ12+λ22+λ32 ,则四元数 Λ = N ( λ 0 N + λ 1 i + λ 2 j + λ 3 k N ) = N ( λ 0 N + λ N ) \boldsymbol{\Lambda} =N(\dfrac{\lambda_0}{N}+\dfrac{\lambda _{1}i+\lambda_{2}j+\lambda_3k}{N}) =N(\dfrac{\lambda _{0}}{N}+\dfrac{\boldsymbol{\lambda }}{N}) Λ=N(Nλ0+Nλ1i+λ2j+λ3k)=N(Nλ0+Nλ).

四元数矢量部分的模 ∣ λ ∣ = λ 1 2 + λ 2 2 + λ 3 2 |\boldsymbol{\lambda}| =\sqrt{\lambda^2_1+\lambda^2_2+\lambda^2_3} λ=λ12+λ22+λ32 ,引入单位矢量 ξ = λ ∣ λ ∣ \boldsymbol{\xi} =\dfrac{\boldsymbol{\lambda}}{| \boldsymbol{\lambda}|} ξ=λλ,则四元数规范化 Λ = N [ λ 0 N + λ 1 2 + λ 2 2 + λ 3 2 N ξ ] \boldsymbol{\Lambda} =N[ \dfrac{\lambda _{0}}{N}+\dfrac{\sqrt{\lambda _{1}^{2}+\lambda_2^{2}+\lambda_3^{2}}}{N}\boldsymbol{\xi}] Λ=N[Nλ0+Nλ12+λ22+λ32 ξ]规范四元数标量部分的平方与单位矢量系数的平方和为 1 1 1.

λ 0 N = c o s θ , λ 1 2 + λ 2 2 + λ 3 2 N = s i n θ , 0 ⩽ θ ⩽ π \dfrac{\lambda_0}{N}=\rm{cos}\theta,\dfrac{\sqrt{\lambda^2_1+\lambda^2_2+\lambda^2_3}}{\it N}=\rm{sin}\theta,0\leqslant\theta\leqslant\pi Nλ0=cosθ,Nλ12+λ22+λ32 =sinθ,0θπ,则 Λ = N ( c o s θ + ξ s i n θ ) \boldsymbol{\Lambda}=N(\rm cos\theta+\boldsymbol{\xi}\rm sin\theta) Λ=N(cosθ+ξsinθ).如果 N = 1 N=1 N=1,可得规范化四元数 E = c o s θ + ξ s i n θ \boldsymbol{E}=\rm cos\theta+\boldsymbol{\xi}\rm sin\theta E=cosθ+ξsinθ.

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值