用几个实用的例子带你理解四元数!文末获取完整项目!
前言
本文不会讲太多四元数公式的推导过程,重点讲讲几个接口的使用和个人理解。
阅读本文可能需要一些前置的知识(但不限于这些知识点):
向量 (内积外积/基本运算/几何意义)
坐标系(左手系/右手系/世界坐标/本地坐标)
矩阵(平移/旋转/缩放/模型矩阵/视图矩阵/投影矩阵)
视点和视线(视点/观察目标/上方向)
表示3D旋转一般采用三种方法:
矩阵
欧拉角
四元数
为什么使用四元数表示旋转呢?
平滑插值。(矩阵基本没有,欧拉角可以做插值,但可能遭遇万向锁的问题)
快速连接和角位移求逆。
能和矩阵快速转换。
仅用四个数。(矩阵9个,欧拉角3个)
难以理解,学会了看起来很牛逼。
当然四元数也有一些缺点:
四元数可能不合法。(一般通过四元数标准化解决这个问题,确保四元数为单位四元数)
对给定的方位的表达方式有两种方法,它们相互为负。(矩阵唯一,欧拉角有无数种)
相对难以使用。
实例
构造四元数
四元数的定义这边就不详细说了,大概知道就是用四个数字去表达旋转。
那么怎么去构造这个四元数呢?我们从API入手去讲解和理解。
旋转轴和旋转角
有了旋转轴和旋转角,就可以表示旋转了,那么四元数也可以通过这个构造出来。
/**
* @zh 根据旋转轴和旋转弧度计算四元数
*/
public static fromAxisAngle<Out extends IQuatLike, VecLike extends IVec3Like> (out: Out, axis: VecLike, rad: number) {
rad = rad * 0.5; // 为什么要除以2?因为公式推导出来的!
const s = Math.sin(rad);
out.x = s * axis.x;
out.y = s * axis.y;
out.z = s * axis.z;
out.w = Math.cos(rad);
return out;
}
本地坐标轴
根据该物体本地坐标轴也能确定旋转。