四元数与3D旋转实例! Cocos Creator 3D Quternion !

本文通过实例探讨四元数在3D旋转中的应用,包括构造四元数、角色朝向、触摸旋转和绕轴旋转等,适合有一定3D知识基础的读者学习。
摘要由CSDN通过智能技术生成

用几个实用的例子带你理解四元数!文末获取完整项目!

前言

本文不会讲太多四元数公式的推导过程,重点讲讲几个接口的使用和个人理解。

阅读本文可能需要一些前置的知识(但不限于这些知识点):

  • 向量 (内积外积/基本运算/几何意义)

  • 坐标系(左手系/右手系/世界坐标/本地坐标)

  • 矩阵(平移/旋转/缩放/模型矩阵/视图矩阵/投影矩阵)

  • 视点和视线(视点/观察目标/上方向)

表示3D旋转一般采用三种方法:

  • 矩阵

  • 欧拉角

  • 四元数

为什么使用四元数表示旋转呢?

  • 平滑插值。(矩阵基本没有,欧拉角可以做插值,但可能遭遇万向锁的问题)

  • 快速连接和角位移求逆。

  • 能和矩阵快速转换。

  • 仅用四个数。(矩阵9个,欧拉角3个)

  • 难以理解,学会了看起来很牛逼。

当然四元数也有一些缺点:

  • 四元数可能不合法。(一般通过四元数标准化解决这个问题,确保四元数为单位四元数)

  • 对给定的方位的表达方式有两种方法,它们相互为负。(矩阵唯一,欧拉角有无数种)

  • 相对难以使用。

实例

构造四元数

四元数的定义这边就不详细说了,大概知道就是用四个数字去表达旋转。

那么怎么去构造这个四元数呢?我们从API入手去讲解和理解。

旋转轴和旋转角

有了旋转轴和旋转角,就可以表示旋转了,那么四元数也可以通过这个构造出来。

/**
* @zh 根据旋转轴和旋转弧度计算四元数
*/
public static fromAxisAngle<Out extends IQuatLike, VecLike extends IVec3Like> (out: Out, axis: VecLike, rad: number) {
    rad = rad * 0.5; // 为什么要除以2?因为公式推导出来的!
    const s = Math.sin(rad);
    out.x = s * axis.x;
    out.y = s * axis.y;
    out.z = s * axis.z;
    out.w = Math.cos(rad);
    return out;
}

本地坐标轴

根据该物体本地坐标轴也能确定旋转。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值