机器学习(7)

一 贝叶斯决策论(Bayesian Decision Theory)

概率框架下实施决策的基本理论:
给定 N N N 个类别,令 λ i j \lambda_{ij} λij 代表将第 j j j 类样本误分为第 i i i 类所产生的损失,则基于后验概率将样本 x x x 分到第 i i i 类的条件风险为:
R ( c i ∣ x ) = ∑ j = 1 N λ i j P ( c j ∣ x ) R ( c _ { i } | x ) = \sum _ { j = 1 } ^ { N } \lambda _ { i j } P ( c _ { j } | x ) R(cix)=j=1NλijP(cjx)贝叶斯判定准则(Bayes decision rule):
h ∗ ( x ) = arg ⁡ min ⁡ c ∈ y ⁡ R ( c ∣ x ) h ^ { * } ( x ) = \operatorname { \mathop{\arg\min}\limits_{c∈y} } R ( c | x ) h(x)=cyargminR(cx)

  • h ∗ h^* h 称为贝叶斯最优分类器(Bayes optimal classifier),其总体风险称为贝叶斯风险(Bayes risk)
  • 反映了学习性能的理论上限

二 生成式和判别式模型

P ( c ∣ x ) P(c|x) P(cx)在现实中通常难以直接获得
从这个角度来看,机器学习所要实现的是基于有限的训练样本
尽可能准确地估计出后验概率
两种基本策略:
在这里插入图片描述
贝叶斯分类器≠贝叶斯学习

三 极大似然估计

先假设某种概率分布形式,再基于训练样例对参数进行估计
假定 P ( x ∣ c ) P(x|c) P(xc) 具有确定的概率分布形式,且被参数 θ \theta θ 唯一确定,则任务就是利用训练集 D D D 来估计参数 θ c \theta_c θc
θ c \theta_c θc 对于训练集 D D D 中第 c c c 类样本组成的集合 D c D_c Dc 的似然(Likelihood)为
P ( D c ∣ θ c ) = ∏ x ∈ D c P ( x ∣ θ c ) P ( D _ { c } | \theta _ { c }) = \prod _ { x ∈ D_c } P ( x | \theta _ { c } ) P(Dcθc)=xDcP(xθc)连乘易造成下溢,因此通常使用对数似然(Log-Likelihood)
L L ( θ c ) = log ⁡ P ( D c ∣ θ c ) = ∑ x = D c log ⁡ P ( x ∣ θ c ) L L( \theta _ { c } ) = \log P ( D _ { c } | \theta _ { c } ) = \sum _ { x = D _ { c } } \log P ( x | \theta _ { c } ) LL(θc)=logP(Dcθc)=x=DclogP(xθc)于是, θ c \theta _ { c } θc 的极大似然估计为 θ ^ c = arg ⁡ min ⁡ θ c L L ( θ c ) \hat\theta_{c}=\mathop{\arg\min}\limits_{\theta_c}LL(\theta_c) θ^c=θcargminLL(θc)

四 朴素贝叶斯分类器(Naive Bayes Classifier)

在这里插入图片描述
在这里插入图片描述

一个例子

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值