打造多模态搜索与RAG系统指南

引言

在现代人工智能技术中,RAG(Retrieval-Augmented Generation)系统正在为丰富文本生成和信息检索提供强有力的支持。传统的RAG系统主要依赖文本数据,利用文档和文本数据库来增强大语言模型(LLM)的上下文。然而,随着多模态数据(包括图像、音频、视频等)的日益普及,如何将多模态数据整合到RAG系统中,成为提升系统能力的重要课题。

RAG系统与多模态RAG的区别

传统RAG系统主要通过检索文本数据来增强生成任务的上下文。其流程通常包括以下步骤:

  1. 文档检索:根据输入查询在文本数据库中检索相关文档。
  2. 上下文整合:将检索到的文本信息整合到LLM的生成任务中。
  3. 答案生成:LLM基于文本上下文生成输出内容。

多模态RAG系统则在此基础上,扩展到对多种模态数据的处理:

  1. 多模态检索:不仅检索文本,还包括图像、音频、视频等不同模态的数据。
  2. 上下文融合:将不同模态的上下文信息整合到LLM中,以提供更全面的上下文支持。
  3. 答案生成:LLM结合多模态上下文生成更丰富、准确的内容。

多模态RAG系统能够处理更加复杂的查询需求

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值