无痛涨点!光学神经网络才是天降紫微星!

AI科研灵感致力于成为您在人工智能领域的领航者,定期更新人工智能领域的重大新闻与最新动态,和您一起探索AI的无限可能。立即关注我们,开启您的AI学习之旅!

2024深度学习发论文&模型涨点之——光学神经网络

光学神经网络(Optical Neural Networks, ONNs)是一种利用光学器件(如激光、光学调制器、滤波器、探测器等)来模拟和实现神经网络推理功能的计算模型 。它通过利用光的特征量(如振幅、相位、频率等)进行信号传输和数据处理,将神经网络的推理计算过程在光的传播过程中完成 。与传统的电子神经网络相比,光学神经网络具有低延迟、低能耗、并行信号处理以及抗电磁干扰强等优势 。

  • 图像识别:由于光的高速传播特性,光学神经网络可以实现快速的图像处理和识别。

  • 语音识别:利用其高带宽特性,光学神经网络可以处理和识别大容量的语音信号。

  • 自然语言处理:可以用于文本分类、情感分析等任务。

  • 模式分析:在模式识别和分析方面,光学神经网络能够提供高效的解决方案。

小编整理了一些光学神经网络论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“光学神经网络”即可全部领取

论文精选

论文1:

FatNet: High Resolution Kernels for Classification Using Fully Convolutional Optical Neural Networks

FatNet:使用全卷积光学神经网络进行分类的高分辨率核

方法

  • 全卷积光学神经网络(FatNet):提出了一种全卷积光学神经网络架构,通过使用高分辨率的特征图和核来提高分类性能。

  • 4f系统加速:利用自由空间4f系统加速神经网络的推理速度,通过光学方式进行卷积操作。

  • 光学-电子混合系统:结合光学和电子系统,光学部分负责卷积操作,电子部分负责后续处理。

  • 高分辨率特征图:在保持帧率不变的情况下,使用更高分辨率的特征图和核,减少光学到电子的转换次数。

    图片

创新点

  • 高分辨率核的使用:通过使用高分辨率核,减少了卷积操作的数量,从而提高了推理速度,FatNet在光学实现中比ResNet-18减少了8.2倍的卷积操作。

  • 光学加速:利用4f系统的并行性,实现了比传统电子系统更快的推理速度,FatNet在光学实现中的推理时间比GPU实现的ResNet-18快得多。

  • 光学-电子混合架构:通过光学-电子混合架构,实现了高效的光学卷积操作和电子处理的结合,提高了系统的整体性能和效率。

图片

论文2:

Image sensing with multilayer, nonlinear optical neural networks

使用多层非线性光学神经网络的图像传感

方法

  • 多层光学神经网络(ONN):构建了一个多层ONN作为图像传感器的前处理单元,通过光学编码将图像压缩到低维特征空间。

  • 非线性激活函数:使用商业图像增强器实现光学到光学的非线性激活函数,增强了网络的深度和非线性能力。

  • 光学矩阵-向量乘法:通过光学方法实现矩阵-向量乘法,利用微透镜阵列和液晶显示器进行光学编码和解码。

  • 光学压缩和特征提取:通过光学编码将图像压缩到低维特征空间,提取与特定任务相关的图像信息。

图片

创新点

  • 非线性ONN编码器:通过引入非线性激活函数,提高了ONN在图像压缩和特征提取中的性能,实现了高达800:1的压缩比。

  • 多层ONN架构:实现了多层ONN架构,能够处理更复杂的图像传感任务,如细胞器分类和交通标志识别。

  • 光学压缩性能提升:在高压缩比下,非线性ONN编码器在多个图像传感任务中表现出比线性ONN和传统图像传感器更高的准确性和效率。  

图片


论文3:

Single-chip photonic deep neural network with forward-only training

具有前向训练的单芯片光子深度神经网络

方法

  • 集成光子深度神经网络(FICONN):在单芯片上集成了多个光学处理器单元,实现了矩阵代数和非线性激活函数的光学计算。

  • 光学非线性单元(NOFU):设计了一种可编程的光学非线性单元,通过电光自调制实现非线性激活函数。

  • 光学矩阵乘法单元(CMXU):利用马赫-曾德尔干涉仪(MZI)网格实现矩阵-向量乘法的光学计算。

  • 原位训练:实现了无需反向传播的原位训练方法,直接在硬件上优化模型参数。  

    图片

创新点

  • 超低延迟推理:实现了410皮秒的超低延迟推理,适用于需要超快速处理的应用场景。

  • 高能效:在光学域中进行计算,减少了光学到电子的转换,实现了每操作约4.6皮焦耳的能效。

  • 原位训练性能:在六类元音分类任务中达到了92.5%的准确率,与数字计算机相当,展示了原位训练的有效性和高效性。

图片


论文4:

Spike-FlowNet: Event-based Optical Flow Estimation with Energy-Efficient Hybrid Neural Networks

Spike-FlowNet:基于事件的光流估计与能效混合神经网络

方法

  • 混合神经网络架构:将脉冲神经网络(SNN)和模拟神经网络(ANN)结合在一起,用于高效处理事件相机输出的稀疏事件数据。

  • 脉冲输入事件表示:提出了一种新的输入表示方法,将事件相机输出的时间序列编码为脉冲事件,保留了时空信息。

  • 自监督学习:使用自监督学习方法进行训练,利用灰度图像作为代理标签,避免了昂贵的标注过程。

  • 近似反向传播:采用近似梯度方法在SNN层中进行反向传播,解决了脉冲神经元模型的非可微性问题。

    图片

  

创新点

  • 混合架构性能提升:Spike-FlowNet在光学流预测能力上优于相应的ANN方法,同时显著提高了计算效率。

  • 脉冲事件表示:通过保留事件的时空信息,提高了对事件相机输出的处理能力,使得网络能够更好地处理稀疏事件数据。

  • 计算效率优化:SNN层的稀疏计算特性使得Spike-FlowNet在计算效率上比全ANN架构提高了214.2倍(dt = 1)和25.51倍(dt = 4)。

图片

小编整理了光学神经网络文代码合集

需要的同学

回复“光学神经网络”即可全部领取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值