自动泊车辅助系统(Automated Parking Assistance, APA)是自动驾驶技术的重要组成部分,它能帮助车辆自动完成停车操作,特别是在狭小空间或复杂的停车环境中,提供对驾驶员的辅助,甚至能实现完全自动化的停车功能。APA系统通过传感器、摄像头、激光雷达(LiDAR)、超声波传感器以及先进的计算机视觉和算法,使车辆能自主识别停车位、导航到停车位、控制车辆的加速、刹车、转向等功能,最终完成停车。
本文将详细阐述APA技术的原理、开发步骤以及开发代码的实现。
一、自动泊车辅助(APA)技术原理
自动泊车辅助系统的核心是基于传感器和算法,通过对周围环境的实时感知、分析和决策,来执行停车操作。APA系统通常分为几个子系统,包括感知、规划与决策、控制等,下面我们将逐一介绍。
1. 感知系统
感知系统是APA系统的基础,通过一系列传感器获取车辆周围环境的信息,形成对停车环境的感知模型。常见的传感器包括:
- 摄像头:前置、后置或侧面摄像头可以获取视觉信息,帮助识别车位边界、障碍物以及其他道路信息。通常采用计算机视觉算法(如卷积神经网络)进行标志检测、车位检测等。
- 激光雷达(LiDAR):提供高精度的距离和深度数据,能够帮助识别复杂的障碍物、车位边缘等。LiDAR在三维空间中具有较强的感知能力。
- 超声波传感器:主要用于近距离障碍物探测,能够为停车过程中的精细控制提供重要的信息,尤其是障碍物与车辆之间的距离。
- 雷达ÿ