K-Nearest Neighbours(KNN) 模型

本文介绍了K-Nearest Neighbours (KNN) 模型在分类和回归中的应用。对于分类,KNN模型在K取不同值时(如1和11)会影响分类边界线的平滑度,影响模型复杂性和过拟合情况。回归分析中,KNN通过计算邻近点的平均值来预测输出,K值的选择影响模型的平滑度和准确性,可用R2评分评估模型性能。所有计算基于欧氏距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KNN 模型,可用于分类和回归分析

分类模型

KNN模型可记住整个训练数据,对一个new instance的分类流程有以下三步:
在这里插入图片描述
当K=1时,分类边界线变化较大,not smooth,有时候呈锯齿状,高方差。这种模型具有高的复杂性,数据过拟合。尝试对每个点正确的预测,从而忽略了数据的整体分类趋势。
在这里插入图片描述当K=11时,分类界限更平滑,这种模型具有低的复杂性,单个点对预测的结果不会有巨大的影响,而是整合了训练数据集的整体趋势
在这里插入图片描述
KNN 模型的相关代码如下,设定K为1,3,11时,分类背景的平滑程度,以及训练数据及预测数据的准确性如下面三个图所示
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值