KNN 模型,可用于分类和回归分析 分类模型 KNN模型可记住整个训练数据,对一个new instance的分类流程有以下三步: 当K=1时,分类边界线变化较大,not smooth,有时候呈锯齿状,高方差。这种模型具有高的复杂性,数据过拟合。尝试对每个点正确的预测,从而忽略了数据的整体分类趋势。 当K=11时,分类界限更平滑,这种模型具有低的复杂性,单个点对预测的结果不会有巨大的影响,而是整合了训练数据集的整体趋势 KNN 模型的相关代码如下,设定K为1,3,11时,分类背景的平滑程度,以及训练数据及预测数据的准确性如下面三个图所示