DAU是啥,数据指标是啥?必知必会的数据分析常识

在刚迈入数据的大门时,我经常对一些数据指标或者数据本身的概念很模糊,尤其是当跟运营、数据分析师扯需求的时候,会被这些密密麻麻的指标给弄糊涂。为了更好的在行业里面摸打滚爬,花了很多时间阅读一些指标相关的文章、书籍,总算解决了这个问题。

 

作为互联网从业人员,目前看来对数据指标、指标的运用还是需要再深入学习下。终于挤出一些时间重新梳理了关于数据指标相关的一些知识,先梳理下数据指标基础知识。

 

1 常见指标

 

先来看一看常见的一些数据指标们

1. DAU:Daily Active User 日活跃用户量。统计一日(统计日)之内,登陆或使用了某个产品的用户数(去重)

2. WAU:Weekly Active Users 周活跃用户量。统计一周(统计日)之内,登陆或使用了某个产品的用户数(去重)

3. MAU:Monthly Active User 月活跃用户量。统计一月(统计日)之内,登陆或使用了某个产品的用户数(去重)

4. DNU:Day New User 日新增用户,表示当天的新增用户

5. DOU:Day Old User 日老用户。当天登陆的老用户,非新增用户

6. ACU:Average Concurrent Users 平均同时在线人数

7. PCU:Peak Concurrent Users 最高同时在线人数

8. UV:Unique Visitor 唯一访问量,即页面被多少人访问过

9. PV:Page View 页面浏览量,即页面被多少人看过

10. ARPU:Average Revenue Per User 平均每个活跃用户收益。

11. ARPPU:Average Revenue Per Paying User 平均每个付费用户平均收益。统计周期内,付费用户对产品产生的平均收入。

12. LTV:Life Time Value 生命周期价值。产品从用户所有互动中获取的全部经济收益的总和

13. CAC:Customer Acquisition Cost 用户获取成本

14. ROI:Return On Investment 投资回报率。

ROI=利润总额/投入成本总额*100%

15. GMV:Gross Merchandise Volume 成交总额。是指下单产生的总金额

CMV=销售额+取消订单金额+退款金额

16. 支付UV:下单并成功支付的用户数

2如何获取指标

对于上述这些指标,如果你很陌生,那么首先可能就会问“这些指标来的呢”,“有些指标直接获取不到呀”。说到这,不得不提到数据采集的基础:埋点。一般在设计好数据指标后,我们会有一个“数据埋点”的工程,通常是由产品经理输出《埋点需求文档》,然后交予开发进行埋点部署,关于埋点的几种方式已经在埋点系列里面,在此不复述了。

埋点是互联网领域最重要的数据采集手段之一。通俗讲就是在web或app植入埋点代码,用以监控用户行为事件。通过埋点,我们可以:

  • 获得用户行为轨迹

  • 追踪任一时间段数据的变化

  • 验证可行性

  • 找出产品设计漏洞等

以电商网站为例,想要统计用户访问网站、访问商品详情页、加入购物车、支付订单到支付成功的转换率。发现从订单支付到支付成功转换率仅有4%,明显过低。即可分析支付节点是否存在bug,由什么原因导致。

 

3 数据指标分类

大致的,我认为可以将数据指标分为三大类:综合性指标、流程性指标、业务性指标。

 

图片

 

 

1. 综合性指标

综合性指标是能体现产品目前综合情况的指标

在非交易网站,比如社交网站,数据指标的用途偏向于了解产品的用户增长或减少等情况。综合性指标通常有:DAU、留存数、留存率、人均使用时长、PV、UV等。

对于交易系型网站,那么平台关注的综合性指标通常是:GMV、支付UV、人均订单数、人均客单价等。

2. 流程性指标

流程性指标是指与用户操作行为相关的指标。

  • 点击率:有PV点击率和UV点击率,一般使用PV点击率。

  • 转换:下一步操作用户数/上一步操作用户数

  • 流失率:(上一步用户数-下一步用户数)/上一步用户数

  • 完成率:完成率相对于转化率而言,是最终的结果数值。转化率是过程值,完成率是结果值。

3. 业务性指标

业务性指标是跟产品业务相关的指标。例如视频网站,则可能需要的业务指标有:视频播放数、人均观看时长、人均播放数、播放率等。

 

数据分析与设计方法

数据分析和设计的方法有:事件分析、留存分析、漏斗分析、分步分析、对比分析和多维度拆解。

1. 事件分析

事件是追踪或记录的用户行为或业务过程。事件是通过埋点记录,通过SDK上传的用户行为或业务过程记录。例如,一个视频内容产品可能包含的事件:①播放视频;②暂停;③继续播放;④分享;⑤评论。

一个事件可能包含多个事件属性,例如,“播放视频”事件下可能包含的属性:①来源;②是否自动播放;③播放形态。

2. 留存分析

留存率是验证用户粘性的关键指标,设计师和产品经理通常可以利用留存率与竞品对标,衡量用户的粘性和忠诚度。通常重点关注次日、3日、7日、30日即可,并观察留存率的衰减程度。留存率跟应用的类型也有很大关系。通常来说,工具类应用的首月留存率可能普遍比游戏类的首月留存率要高。

3. 漏斗分析

漏斗分析就是转化率分析,是通过计算目标流程中的起点,到最后完成目标节点的用户量与留存率,流量漏斗模型在产品中的经典运用是AARRR模型。

衡量每一节点的转换率,通过异常数据(转换率过低)找出异常节点,进而确定各个环节的流失率,分析用户怎么流失、为什么流失、在哪里流失。根据数据改进产品,最终提升整体转化率。

图片

 

4. 用户分群分析

用户在某个特定条件下的用户分组或占比。例如:注册7天内下单的用户组、参与过A活动的用户等。

5. 对比分析

将不同时段的数据进行对比,找出差值,进行产品优化或验证设计。

  • 自身产品对比:对比产品不同模块相似场景的数据,找出问题点。

  • 行业产品对:与同行业产品进行对比,找出优劣势,并持续优化。

6. 多维度拆解

用不同的维度视角拆分分析同一类数据指标。例如按照不同的省市地区分析、不同的用户人群、不用的设备等。通过不同维度拆解,找到数据背后的真相。

5 建立数据模型

引入数据分析,就要引入数据模型。数据模型的核心是“分类”,如何选择或创造适合自身产品的数据模型,我们可以先了解市面上熟知几大模型。

1. AARRR

AARRR是Acquisition、Activation、Retention、Revenue、Referral,这个五个单词的缩写,分别对应用户生命周期中的5个重要环节。

获取用户(Acquisition):首先,你需要从广告/渠道等去拉新,获取用户。然而用户下载了不一定会安装,安装了不一定会使用该应用。所以激活成了这个层次中最关心的数据。

  • 关注指标:CAC(用户获取成本 Customer Acquisition Cost)

 

提高活跃度(Activation):然后,通过引导用户注册等方式来激活他们。

  • 关注指标:DAU(日活跃用户)、MAU(月活跃用户)、每次启动平均使用时长、每个用户每日平均启动次数、日活跃率、周活跃率、月活跃率

提高留存率(Retention):用户被激活后,剩余的工作就是如何让他们留下来,产生粘性。

  • 关注指标:1-Day Retention(次日留存率)、7-Day Retention(D+7日留存率)。曾经有游戏行业的行家指出,如果想成为一款成功的游戏,1-Day Retention要达到40%, 7-Day Retention要达到 20%。

获取收入(Revenue):收入一般有三种,付费应用、应用内付费及广告。

  • 关注指标:ARPU(平均每用户收入)、ARPPU(平均每付费用户收入)、CAC(用户获取成本)、LTV(生命周期价值)。LTV – CAC的差值,就可以视为该应用从每个用户身上获取的利润。所以最大化利润,就变成如何在降低CAC的同时,提高LTV,使得这两者之间的差值最大化。

用户推荐(Referral):以前的运营模型到第四个层次就结束了,但是社交网络的兴起,使得运营增加了一个方面,就是基于社交网络的病毒式传播,这已经成为获取用户的一个新途径。这个方式的成本很低,而且效果有可能非常好;唯一的前提是产品自身要足够好,有很好的口碑。

 

图片

 

在整个AARRR模型中,这些量化指标都具有很重要的地位,而且很多指标的影响力是跨多个层次的。及时准确地获取这些指标的具体数据,对于应用的成功运营是必不可少的。

2. RARRA

RARRA模型本质上是通过AARRR模型调整顺序得来的,其原因是AARRR专注于获客(Acquisition),且是McClure是在2007年编写的,当时的CAC还比较低廉,上架应用即容易获得用户。在互联网流量高速增长的今天,获取用户(Acquisition)已变得非常昂贵,所有应用商城都有百万个APP,市场竞争激烈,简单发布一个应用就有用户早已已不再是赚钱的方式。所以,以拉新获客的增长模式不再适用。现在黑客增长的真正关键是留存(Retention)。

RARRA模型是托马斯·佩蒂特Thomas Petit和贾博·帕普Gabor Papp对于AARRR模型的优化。

  • 用户留存(Retention):是RARRA最重要的指标,留存率是反应用户留存最重要的指标之一。

  • 用户激活(Activation):加速用户激活,为用户的第一次使用提供尽可能愉快的体验。确保他们在首次使用时就看到产品的价值所在。

  • 用户推荐(Referral):建立有效的推荐系统,让用户主动分享和讨论你的产品。

  • 商业变现(Revenue):提高用户的LTV(Lifetime Value),用户留存越长,对业务的价值越大。

  • 用户拉新(Acquisition):鼓励老用户带来新用户;优化获客渠道,通过渠道群组分析找出最适合你产品的获客渠道。

3. Google’s HEART

Google’s HEART是一个用来评估以及提升用户体验的模型,它由五个维度组成:Engagement(参与度)、Adoption(接受度)、Retention(留存度)、Task Success(任务完成度)和Happiness(愉悦度)。

4. Customer Experience Index (CX Index)

用户体验指数的维度有三个,分别为:满足需求、简单地和愉快地。

以上就是几个常见的数据指标模型,我们可以通过分析每个模型的背景和用途来学习其中的指标思路,并创造出适合自己团队的数据模型。

6  指标字典

为了对指标进行统一管理,方便维护和共享,我们需要创建指标字典。指标字典可以是Excel表,或者其他记录形式。在数据量大的复杂环境中,一般将指标管理功能放在数据管理系统中。

指标一般分为三类:基础指标、普通指标、计算指标。

1. 基础指标

指没有更上游的指标,即它的父级指标就是它自身。例如“团购交易额”、“订单量”、“日活跃用户数”。

2. 衍生指标

指在单一父级指标的基础上限定某个维度得到的指标。例如“PC端团购交易额”,限制条件为“下单平台=PC”。

3. 计算指标

指在若干个描述型指标上通过四则运输、排序、累计或汇总定义出的指标为计算指标。例如“客单价”、“ARPU”等

 

图片

 

指标字典通畅包含指标维度和指标量度两大部分,例如

图片

指标字典的维度

图片

指标字典的量度

数据指标如何验证设计

指标的最终目的是用来衡量产品的是否符合预期,并为后续产品优化工作提供思路和方向。

1. 关注核心指标

例如我们改版的核心指标是提高用户注册人数,那我们关注的就是注册转换率,先看从点击注册到注册成功步骤的流失率,找出流失最大的节点最优化方案。等优化上线后,对比转化率的变化。

如果我们改版的核心指标是人均观看次数,则思考下什么策略既可以提升播放次数,又不费什么成本。比如新浪微博视频,以前看完视频后有重播按钮和其他推荐的视频,改版后看完这个视频会自动播放下一个视频。这样的设计虽然比较粗暴,但明显提高了视频播放次数。

2. 总结核心指标带来的收益

怎样用指标量化设计价值。简单粗暴举个栗子,比如活动上线后,点击率是4.8%,每天的活动GMV约200万,当重新设计了活动页面后,在其他条件不变的情况下,点击率提升到了8%,活动GMVd达到了700万。那么增加的500万则是通过设计带来的收益。

<think>嗯,用户问的是怎么准备数据分析面试。我得先理清楚这个问题需要涵盖哪些方面。首先,数据分析面试通常包括技术问题、业务场景题、统计知识还有行为面试部分。可能用户是刚开始找工作,或者想转行做数据分析,需要全面的指导。 技术方面,SQL和Python/R是必须的。SQL可能会考窗口函数、聚合函数,还有优化问题。Python的话,pandas、numpy这些库的应用,数据清洗、处理,可能还有算法题。用户可能需要具体的例子或者学习资源推荐。 然后是统计知识,假设检验、概率题、A/B测试设计这些常见考点。比如p值、置信区间、t检验、z检验的区别和应用场景。这部分需要简明扼要的解释,避免太复杂的公式,但又要准确。 业务场景题可能会问如何分析某个指标下降的原因,或者设计一个指标评估活动效果。这里需要结构化思维,比如拆解指标、提出假设、验证方法等。用户可能需要例子来说明如何回答这类问题。 项目经验部分,用户需要准备好简历上的项目,用STAR法则描述,突出自己的贡献和解决的问题。面试官可能会深挖细节,所以必须对项目的每个环节都熟悉。 行为面试问题,比如团队合作、遇到的挑战,这些需要提前准备故事,展示软技能。可能用户需要知道如何具体回答,比如用什么样的结构,比如STAR模式。 另外,可能还要提到公司调研,了解他们的业务和数据驱动的文化,这样面试时可以更有针对性。还有模拟面试的重要性,找朋友练习或者录下来自己复盘。 需要确保回答结构清晰,分点列出,每个部分有子点,可能用加粗或者编号。但用户要求用中文,而且不能使用markdown,所以得用自然的分段和标题。比如分为技术准备、统计知识、业务思维、项目复盘、行为面试、公司调研、模拟面试等部分。 还要注意用户提到的系统级指令,数学公式用$...$,但用户的问题可能不涉及太多公式,不过如果有统计部分可能需要,比如假设检验的公式。比如p值的计算,或者置信区间的公式,这时候要用正确的LaTeX格式,并且行内公式用$...$,独立公式用$$...$$。但根据用户的问题,可能这部分内容不多,但需要留意。 用户可能需要资源推荐,比如LeetCode、牛客网刷SQL题,《统计学习方法》之类的书籍,或者网课推荐。但不确定用户是否需要,所以可能放在最后作为补充,或者简要提及。 最后要确保回答真实可靠,不给出错误的信息,比如SQL的正确用法,统计概念的正确解释。如果有不确定的地方,需要避免或者注明。比如A/B测试的注意事项,样本量计算的方法等,要准确。 现在整合这些思考,组织成一个结构化的回答,分步骤说明,每个部分详细但不过于冗长。可能需要用序号或者分点,但用户要求不使用markdown,所以用自然的中文分段落,加上标题式的引导词,比如“一、技术基础准备”,“二、统计知识巩固”等,但可能更口语化一些。 检查是否有遗漏的部分,比如简历准备、沟通技巧,或者面试后的跟进。但用户主要问的是准备面试,可能重点在面试前的准备,所以可以集中在技术、统计、业务、项目、行为、公司调研、模拟这几个方面。 总结下来,回答的结构大概是: 1. 技术基础(SQL、Python/R、数据可视化) 2. 统计知识(假设检验、概率题、A/B测试) 3. 业务思维(指标分析、场景题、案例分析) 4. 项目复盘(项目细节、挑战、成果) 5. 行为面试(团队合作、解决问题) 6. 公司调研(业务模式、数据应用) 7. 模拟面试(练习、反馈) 每个部分给出具体的学习方法和例子,比如SQL的常见题目类型,如何练习,业务题的回答框架(拆解指标、提出假设、数据验证等)。 还要提醒用户注意沟通表达,清晰有条理,即使不确定也要展示思考过程。最后鼓励用户多练习,保持自信。 现在开始组织语言,确保每个部分简洁明了,符合用户的要求,使用中文,不使用markdown,行内公式正确,如果有的话。比如在统计部分提到假设检验时,可能需要公式如$H_0$和$H_1$,或者p值的定义,这时候用$符号包裹。但根据用户的问题,可能公式不多,但需要留意。</think>准备数据分析面试需要系统性地覆盖技术能力、业务思维、统计知识、项目经验及行为面试。以下是分步骤的详细指南: --- ### **一、技术基础准备** 1. **SQL** - **高频考点**:聚合函数(`SUM`、`COUNT`)、窗口函数(`ROW_NUMBER`、`RANK`)、多表连接(`JOIN`)、子查询、查询优化(索引、执行效率)。 - **刷题平台**:LeetCode、牛客网,重点练习“留存率计算”“排行榜问题”等高频题型。 - **注意点**:熟悉`EXPLAIN`分析查询性能,避免全表扫描。 2. **Python/R** - **数据处理**:掌握`pandas`(数据清洗、`groupby`合并)、`numpy`(向量化运算);或R的`dplyr`、`tidyr`。 - **算法题**:刷简单-中等难度题目(如LeetCode),重点练习链表、字符串、二分查找。 - **加分项**:了解常用库(如`scikit-learn`用于基础机器学习)。 3. **数据可视化** - 能解释常见图表(如箱线图、热力图)的应用场景,用`Matplotlib`/`Seaborn`或`Tableau`绘制样例。 --- ### **二、统计知识巩固** 1. **假设检验** - 掌握流程:定义$H_0$和$H_1$→选择检验方法(t检验、卡方检验)→计算p值→结论。 - **常见问题**:p值的含义、第一类错误 vs 第二类错误、如何选择单双尾检验。 2. **概率题** - 重点题型:贝叶斯定理(如疾病检测问题)、排列组合(如抽球概率)、期望计算。 3. **A/B测试** - 能回答:如何确定样本量?如何分析结果(显著性、置信区间)?如何应对辛普森悖论? --- ### **三、业务思维与场景题** 1. **指标分析** - **框架**:明确问题→拆解指标(如DAU下降=新用户+老用户)→提出假设→验证方法(如维度下钻)。 - **举例**:如何分析“某日GMV骤降”?可能的假设:服务器故障、活动效果差、竞品动作等。 2. **场景设计** - **常见题**:设计一个指标评估功能上线效果;如何判断用户流失原因? - **回答逻辑**:从业务目标出发→选择核心指标→设计数据采集方案→分析维度(如用户分群)。 --- ### **四、项目复盘与表达** 1. **项目深挖** - 用STAR法则描述项目:背景(Situation)、任务(Task)、行动(Action)、结果(Result)。 - **准备细节**:数据来源是否可靠?是否考虑过偏差?如何验证结果? 2. **挑战与解决** - 举例:“数据缺失时如何处理?”→答案可能包括填充均值、多重插补或业务逻辑推断。 --- ### **五、行为面试准备** 1. **高频问题** - 团队合作冲突如何解决? - 最有成就感的数据分析案例? - 如何向非技术人员解释复杂结论? 2. **回答技巧** - 结合具体案例,突出分析能力与沟通能力(如:“我曾用类比法向产品经理解释置信区间”)。 --- ### **六、公司调研与适配** 1. **了解业务** - 研究公司核心业务(如电商关注复购率、内容平台关注停留时长),准备相关分析思路。 2. **文化匹配** - 提前了解团队技术栈(如Hive还是Spark)和数据驱动程度,面试中表达适配性。 --- ### **七、模拟面试与反馈** 1. **实战演练** - 找同行模拟技术面试,用“白板”手写SQL/Python代码。 - 录制回答行为问题的视频,观察表达流畅度。 2. **复盘调整** - 针对卡壳的问题重新梳理逻辑,确保回答简洁(如用“总分总”结构)。 --- ### **资源推荐** - **书籍**:《SQL必知必会》《统计学七支柱》 - **课程**:Coursera的《Data Science专项课程》 - **面经**:牛客网、一亩三分地论坛搜“数据分析岗” --- **最后提醒**:面试中遇到不确定的问题,可先复述问题确认理解,再逐步拆解展示思考过程。保持自信,体现“数据驱动业务”的思维!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值