通过Ollama本地部署DeepSeek R1以及简单使用的教程(超详细)建议收藏起来慢慢学!!

本文介绍了在Windows环境下,通过Ollama来本地部署DeepSeek R1。该问包含了Ollama的下载、安装(命令和双击安装)、安装目录迁移、大模型存储位置修改、下载DeepSeek以及通过Web UI来对话等相关内容。

1、🥇下载Ollama

首先我们到Ollama官网去下载安装包,此处我们下载的是Windows版本的安装包,如下图所示:

Windows安装包下载

注意:Ollama安装包最终的下载地址是定位到github的,因此可能需要 Fan Qiang 才能下载。


2、🥈安装Ollama

下面提供两种安装方式:

  • 通过命令安装(推荐)
  • 通过鼠标双击安装(不推荐)

安装Ollama的时候,推荐使用命令【2.1、🥪通过命令安装(推荐)】来安装,好处是可以修改安装的目录位置

而【通过鼠标双击安装(不推荐)】是不能修改安装的目录位置的(默认安装在C盘)。

因此安装的时候强烈推荐选择【2.1、🥪通过命令安装(推荐)】方式进行安装。

【2.1、🥪通过命令安装(推荐)】和【2.2、🍞通过鼠标双击安装(不推荐)】选择其中一种方式安装即可。

2.1、🥪通过命令安装(推荐)

之所以推荐使用命令安装,是因为通过命令安装可以修改默认的安装目录位置,而通过鼠标双击安装,默认会安装到C盘。

通常情况下,我们不希望安装到C盘,此时我们就可以通过使用命令的方式将Ollama安装到其他盘的某个目录下。

  1. 以管理员身份运行CMD,并定位到OllamaSetup.exe所在的目录(假设OllamaSetup.exeD:\Temp目录下),然后执行如下命令:

    OllamaSetup.exe /DIR="D:\Net_Program\Net_Ollama"
    
    

    上述命令中DIR的值为D:\Net_Program\Net_Ollama,该值就是安装的目录位置。

    命令

  2. 执行上述命令后,会弹出OllamaSetup.exe安装窗体界面,此时我们点击Install按钮等待安装完成即可,如下图所示:
    点击安装按钮

    命令

注意: 安装完成后,Ollama默认为打开状态,此时我们先退出Ollama(鼠标右键点击任务栏的Ollama图标然后选择退出即可)。

2.2、🍞通过鼠标双击安装(不推荐)

我们直接双击安装包,然后点击Install按钮等待安装完成即可,如下图所示:

点击安装按钮

安装中

**注意:**安装完成后,Ollama默认为打开状态,此时我们先退出Ollama(鼠标右键点击任务栏的Ollama图标然后选择退出即可)。

上图中,Ollama默认安装在C盘的C:\Users\quber\AppData\Local\Programs\Ollama目录下,如下图所示为默认安装的文件,大小大概有4.56GB:

安装完成


Ollama安装完成后,在桌面上是没有快捷启动图标的,我们可以在开始菜单中查找或在搜索框中搜索,如下图所示:

Ollama

Ollama


3、🥉转移Ollama安装目录

如果安装Ollama的时候是通过【2.1、🥪通过命令安装(推荐)】来安装的,以下操作步骤忽略跳过即可,直接开始操作【4、🎉验证Ollama】

如果不想将Ollama安装到C盘,可以将安装的所有文件全部剪切到其他盘的目录内,如转移到D盘的D:\Net_Program\Net_Ollama目录下,这样可以节约C盘的空间,如下图所示:

转移目录

转移后,我们还需要修改Ollama的环境变量

打开环境变量,双击用户变量中的Path,我们会看到最后一条信息就是Ollama安装完成后默认添加进来的,如下图所示:

环境变量

我们双击最后一条信息进入编辑状态,修改为我们转移的目录D:\Net_Program\Net_Ollama,然后点击确定按钮关闭所有窗体即可,如下图所示:

环境变量


4、🎉验证Ollama

上述步骤完成后,我们可以打开CMD,输入ollama -v命令,如果出现如下图所示的内容就代表Ollama安装成功了:

验证

同样我们输入ollama -h命令可以查看Ollama其他操作命令,如下图所示:

操作命令


5、🎄修改大模型存储位置

接下来我们需要配置大模型下载存储的目录位置(默认存储在C盘的C:\Users\quber\.ollama\models目录下)。

同样我们打开环境变量,然后在用户变量中点击新建按钮,变量名为OLLAMA_MODELS,变量值为D:\Net_Program\Net_Ollama\Models,其中的变量值就是大模型下载存储的目录位置,最后点击确定即可,如下图所示:

存储位置


6、🎁下载DeepSeek

同样我们打开Ollama官网,点击顶部的Models链接,此时我们就会看到deepseek-r1模型排在第一位,如下图所示:

DeepSeek

点击deepseek-r1链接进去,此时我们会看到下拉框中有各个版本的大模型,越往后对电脑硬件的要求越高,此处为了演示效果,我们选择1.5b进行下载(具体可根据自己的电脑和需求有选择性的下载),如下图所示:

DeepSeek

显卡要求:

版本要求
DeepSeek-R1-1.5bNVIDIA RTX 3060 12GB or higher
DeepSeek-R1-7bNVIDIA RTX 3060 12GB or higher
DeepSeek-R1-8bNVIDIA RTX 3060 12GB or higher
DeepSeek-R1-14bNVIDIA RTX 3060 12GB or higher
DeepSeek-R1-32bNVIDIA RTX 4090 24GB
DeepSeek-R1-70bNVIDIA RTX 4090 24GB *2
DeepSeek-R1-671bNVIDIA A100 80GB *16

随后我们复制下拉框后面的命令ollama run deepseek-r1:1.5b,粘贴到_新打开的CMD窗口_中回车执行(耐心等待下载完成),如下图所示:

DeepSeek

DeepSeek

注意: 上述下载命令需要在新打开的CMD窗口中执行(因为我们在【5、🎄修改大模型存储位置】中修改了大模型存储的位置),否则下载的文件存储在C:\Users\quber\.ollama\models位置,就不是我们修改的D:\Net_Program\Net_Ollama\Models这个位置了。

**温馨提示:**下载过程中,最开始下载速度可能要快一些,下载到后面可能就几百KB了,此时我们可以按Ctrl+C停止下载,然后再重新复制命令执行下载,此时的下载速度又恢复到了几MB了(此操作可能会遇到重新下载的情况,但是几率很小),如此往复操作即可,如下图所示:

DeepSeek

如出现如下图所示的效果就代表下载完成了:

DeepSeek

7、🎀验证DeepSeek

在DeepSeek下载完成后,我们就可以在CMD中输入内容进行对话了,如输入:你好,如下图所示:

演示

假设我们安装了多个DeepSeek模型,我们可以通过ollama list命令查看已安装了的模型,如下图所示:

模型

如果我们想运行某个模型,我们可以通过ollama run 模型名称命令运行即可,如下图所示:

模型

如果我们想退出对话,我们可以通过/bye命令退出,如下图所示:

模型

到此,DeepSeek R1的部署就基本告一段落。


8、🎑Web UI对话

虽然我们可以通过CMD窗口进行对话,但是相对不那么直观,于是我们可以通过第三方Web UI来实现对话效果。

8.1、🎨Chrome插件-Page Assist

首先我们通过谷歌浏览器官方插件地址搜索Page Assist,点击Page Assist - 本地 AI 模型的 Web UI,如下图所示:

Page Assist

然后添加到Chrome:

Page Assist

安装完成后,我们可以将该插件固定(钉)到浏览器顶部,方便使用,如下图所示:

Page Assist

随后我们点击该插件,就会出现如下图所示的界面:

Page Assist

在界面中出现了Unable to connect to Ollama的提示,是因为我们安装的Ollama没有启动,此时我们只需要启动Ollama软件即可,启动后的界面效果如下图所示:

Page Assist

设置中文: 点击界面右上角的Settings按钮,将语言设置为简体中文,如下图所示:

Page Assist

Page Assist

设置完成后返回主界面,此时就是中文界面了。

选择模型: 点击主界面中的第一个下拉框,选择我们刚才下载的模型deepseek-r1:1.5b,如下图所示:

Page Assist

到此,配置就完成了。

对话演示: 接下来我们就可以愉快的对话了,效果如下图所示:

在这里插入图片描述

温馨提示: 上述演示效果等待时间可能有点长,和电脑的配置有一定的关系,仅供参考。

8.2、👑chatboxai在线对话

我们也可以通过在线Web UI https://web.chatboxai.app/ 进行对话。

首先我们打开https://web.chatboxai.app/,打开后界面中间会有一个弹出框,我们点击阴影处即可取消该弹框的显示。

设置中文: 我们点击左下角的Settings,在弹出框中点击DISPLAY,在第一个下拉框中选择简体中文,随后点击右下角的SAVE即可显示为中文了,如下图所示:

设置中文

**配置环境变量:**在用户环境变量中,我们点击新建,分别新建下面两组变量,如下所示:

OLLAMA_HOST       0.0.0.0    --任何IP都可以访问
OLLAMA_ORIGINS    *

环境变量

环境变量

重启Ollama: 配置好环境变量后,我们重启下Ollama,目的是让https://web.chatboxai.app/能自动识别连接到Ollama服务,然后刷新下https://web.chatboxai.app/

设置模型提供方和模型:点击左下角的设置按钮,然后在模型选项卡中选择模型提供方为OLLAMA API,模型选择deepseek-r1:1.5b,然后点击保存,如下图所示:

配置

对话演示: 接下来我们就可以愉快的对话了,效果图下图所示:

演示效果

到此,DeepSeek R1模型的本地部署以及简单对话应用就完成了!!!

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

DeepSeek全套安装部署资料

在这里插入图片描述

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

### 部署 DeepSeek R1 模型 #### 环境准备 为了成功部署 DeepSeek R1 模型,硬件和软件环境需满足特定条件。 对于硬件方面: - **GPU 显存要求**:根据模型大小不同,所需显存量也有所差异。7B 模型至少需要 8-12GB 的显存;14B 和 32B 模型则分别推荐拥有超过 12GB 及建议大于等于 16GB 的显存[^3]。 - 推荐使用 NVIDIA 显卡,并确保有足够的 SSD 空间来存储模型文件,通常建议预留 50GB 或更多磁盘空间。 关于软件需求: - 安装最新的 NVIDIA 驱动程序以支持所选 GPU 设备。 - CUDA 工具包应被安装至版本 11.7 或更新版本以便于加速计算性能。 - 下载并完成 Ollama 平台的设置过程,这是用于管理和运行 DeepSeek R1 所必需的基础架构组件之一。 #### 步骤指南 ##### 安装 Ollama 访问官方网址获取最新版 Ollama 应用程序,并按照提示完成其在 Windows 上的安装流程[^1]。 ##### 获取与加载 DeepSeek R1 一旦 Ollama 成功安装完毕,则可通过该平台直接下载所需的 DeepSeek R1 版本。这一步骤简化了传统方法中的复杂操作,使得即使是初次接触此类技术的新手也能顺利完成整个过程。 ```bash ollama install deepseek-r1 ``` 上述命令会自动处理所有必要的依赖关系以及配置工作,使用户能够专注于后续的应用开发而非底层细节管理。 ##### 使用 Python 进行 API 调用 为了让开发者更容易集成此功能到现有项目当中,提供了简单易用的 RESTful API 接口供外部应用程序调用。下面给出了一段利用 `requests` 库发起请求的例子代码片段: ```python import requests url = "http://localhost:8080/v1/models/deepseek-r1:predict" data = {"prompt": "你好"} response = requests.post(url, json=data) print(response.json()) ``` 这段脚本向本地主机上的指定端口发送 POST 请求,其中包含了待预测文本作为输入参数。返回的结果将以 JSON 格式呈现给客户端应用进一步解析处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值