LLMs之PE:大模型核心技术—提示工程(Prompt Engineering)—拿来即用—实战应用技巧案例集合(如PC/CoT/ToT/ReACT/ScP/PCTS等思想,Broke/RTRWCO-STAR等提示框架结构)
目录
LLMs:OpenAI 官方文档发布提高 GPT 使用效果指南—GPT最佳实践(GPT best practices)翻译与解读
大模型核心技术—提示工程(Prompt Engineering)—理论部分
1、Prompt工程高质量完全指南:使用不同的Prompt 工程技术来实现不同的目标
(4)、限定类别:控制生成提示(模板/特定词汇等)、多项选择提示、文本分类提示、可解释性软提示
(7)、细分任务:文本生成提示、命名实体识别提示、概述提示、聚类提示
大模型核心技术—提示工程(Prompt Engineering)——实战技巧案例集合实用技巧总结
测试ChatGPT:Let's think step by step
测试ChatGPT:Let's work this out in a step by step way to be sure we have the right answer
测试ChatGPT:Let’s consider all possible options and evaluate them one by one.(让我们考虑所有可能的选择,并逐一评估它们)
LLMs之ReACT-Agent:ReACT-Agent简介、实现及其使用方法(MReACT/AutoReACT)、案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)之详细攻略
T4、采用Broke提示框架结构:Background+Role+Objective+Key Resul+Evolve
T5、采用RTRW提示框架结构:Role+Task+Request+Workflow
T6、采用CO-STAR提示框架结构:Context+Objective+Style+Tone+Audience+Response
采用ChatGPT对比输出结果:是否采用CO-STAR 框架实现