LLMs之PE:大模型核心技术—提示工程(Prompt Engineering)—拿来即用—实战应用技巧案例集合(如PC/CoT/ToT/ReACT/ScP/PCTS等思想,Broke/RTRWCO-

本文深入探讨大模型核心技术——提示工程,涵盖PC、CoT、ToT、ReACT等多种提示策略的理论与实战应用,通过案例分析展示如何利用这些方法提升大语言模型的推理与准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LLMs之PE:大模型核心技术—提示工程(Prompt Engineering)—拿来即用—实战应用技巧案例集合(如PC/CoT/ToT/ReACT/ScP/PCTS等思想,Broke/RTRWCO-STAR等提示框架结构)

目录

相关文章

LLMs:OpenAI 官方文档发布提高 GPT 使用效果指南—GPT最佳实践(GPT best practices)翻译与解读

LLMs:Claude官方文档发布提示工程技术及其使用技巧

大模型核心技术—提示工程(Prompt Engineering)—理论部分

1、Prompt工程高质量完全指南:使用不同的Prompt 工程技术来实现不同的目标

(1)、指令提示、角色提示、种子词提示,及其综合提示

(2)、思考修正:思考一下提示、自一致性提示

(3)、知识生成提示、知识整合提示

(4)、限定类别:控制生成提示(模板/特定词汇等)、多项选择提示、文本分类提示、可解释性软提示

(5)、对话提示、问答提示、零样本/少样本提示

(6)、对抗提示、强化学习提示、课程学习提示

(7)、细分任务:文本生成提示、命名实体识别提示、概述提示、聚类提示

大模型核心技术—提示工程(Prompt Engineering)——实战技巧案例集合实用技巧总结

T1、引导推理方法

T1.1、采用PC思想

测试ChatGPT:多个提示,详见下述内容

T1.2、采用CoT思想

测试ChatGPT:Let's think step by step

测试ChatGPT:Let's work this out in a step by step way to be sure we have the right answer

测试ChatGLM-4:美国总统多大了?

测试ChatGLM-4:我怎么从新加坡到旧金山?

T1.3、采用ToT思想

测试ChatGPT:Let’s consider all possible options and evaluate them one by one.(让我们考虑所有可能的选择,并逐一评估它们)

测试ChatGPT:“We should explore different scenarios and consequences before making a decision.”(在做出决定之前,我们应该探讨不同的场景和结果。)

T2、增强准确性方法

T2.1、ReACT思想

LLMs之ReACT-Agent:ReACT-Agent简介、实现及其使用方法(MReACT/AutoReACT)、案例应用(比如采用ReAct框架让LLM稳定输出JSON格式数据)之详细攻略

手动实现ReACT

T2.2、采用ScP思想

测试ChatGPT:“To ensure accuracy, let’s answer this question multiple times and compare the results.”(为了确保准确性,让我们多次回答这个问题并比较结果。)

测试ChatGLM:Provide several independent answers to this question, and then, after further analyzing all the answers, we will select the most consistent or most similar answer as the final output.(对于这个问题分别提供几个独立的答案,然后,我们对所有答案进一步分析,最后选择最一致或者最相似的答案作为最终的输出。)

T3、采用PCTS思想

测试ChatGPT:多个提示,详见下述内容

T4、采用Broke提示框架结构:Background+Role+Objective+Key Resul+Evolve

测试ChatGPT:多个提示,详见下述内容

T5、采用RTRW提示框架结构:Role+Task+Request+Workflow

 测试ChatGPT:多个提示,详见下述内容

T6、采用CO-STAR提示框架结构:Context+Objective+Style+Tone+Audience+Response

原理介绍

测试ChatGPT:CO-STAR 框架案例实战

采用ChatGPT对比输出结果:是否采用CO-STAR 框架实现

英文

中文


相关文章

LLMs:OpenAI 官方文档发布提高 GPT 使用效果指南—GPT最佳实践(GPT best practices)翻译与解读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个处女座的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值