比GraphRAG和LightRAG还强的HippoRAG 2来了!

一、为什么需要非参数持续学习?

近年来,大语言模型(LLMs)在许多方面取得了显著进展。然而,大型语言模型的持续学习方法目的是让LLMs能够随时间获取和整合新知识,同时保留过去的信息。考虑到全面预训练大型语言模型的高计算成本,这里不再继续讨论这种方法。

其他持续学习方法通常分为三类:持续微调、模型编辑和RAG。

  • 持续微调(Continual fine-tuning)涉及定期用新数据对大型语言模型进行训练。可以通过像持续预训练、指令微调和对齐微调等方法实现。虽然整合了新的语言模式和推理技能,但持续微调受到灾难性遗忘的影响,即随着新数据的引入而丢失先前学到的知识。此外,其计算费用使得频繁更新对现实世界的应用来说也不具备可操作性。

  • 模型编辑技术(Model editing)提供了一个更轻量级的替代方案,通过直接修改模型中的特定参数来更新其知识。然而,这些更新高度局部化,对与更新相关联的信息影响很小。

  • 检索增强生成(Retrieval-Augmented Generation)作为连续学习的一个可扩展且实用的替代方案。与其修改大型语言模型(LLM)本身,不如在推理时检索相关的外部信息,允许实时适应新知识。

然而,传统的 RAG 方法依赖于简单的向量检索,无法捕捉人类长期记忆的两个关键特征:

  • 意义构建(sense-making):指理解大规模或复杂事件的能力,标准的RAG方法在处理需要理解大规模或复杂事件、经历或数据的能力(即情境理解)方面存在不足。这种能力对于理解和推理长篇故事或复杂文本至关重要。

  • 关联性(associativity):关联性则是指在不同知识片段之间建立多跳连接的能力,难以在多跳问答任务中表现出色,因为它们依赖于独立的向量检索,无法有效地在多个信息片段之间建立多跳连接。这对于需要从不同来源或段落中提取信息来回答问题是关键的限制。

尽管一些改进的 RAG 方法通过引入知识图谱等结构来增强这些能力,但它们在更基本的记忆任务上的表现却显著下降。

二、HippoRAG 2:一个更接近人类记忆的框架

为了克服上述问题,我们提出了 HippoRAG 2 框架。HippoRAG 2基于神经生物学启发的长期记忆框架,包括人工新皮层(LLM)、旁海马区(PHR编码器)和人工海马体(开放知识图谱)。这些组件协同工作,复制人类长期记忆中观察到的交互作用。

在这里插入图片描述

HippoRAG 2是在 HippoRAG 的基础上进行了改进,结合了个性化 PageRank 算法更深入的段落整合,并更有效地在检索过程中使用 LLM。这种组合使得 RAG 系统更接近人类长期记忆的效果。

2.1 在离线阶段

  • 提取开放知识图谱三元组:使用大型语言模型(LLM)从文本中提取开放知识图谱(KG)的三元组。这些三元组由主语、谓语和宾语组成,用于表示文本中的概念和关系。

  • 同义词检测:在构建的知识图谱中,识别并添加同义词边。这一步骤通过评估短语对的向量相似性来实现,确保知识图谱能够跨不同段落链接同义词,从而增强知识的整合能力。

  • 密集稀疏集成:HippoRAG 2 引入了一种密集稀疏集成的方法,将短语节点作为稀疏编码来表示提取的概念,并在知识图中引入密集编码来表示上下文信息。这种方法通过在知识图中添加段落节点来实现,使得上下文信息能够更无缝地与概念信息结合。

2.2 在在线阶段

  • 查询链接:使用编码器将查询与相关的三元组和段落链接起来,识别潜在的种子节点用于图搜索。为了更有效地对齐查询语义,HippoRAG 2 采用查询到三元组的匹配方法,利用三元组中包含的基本上下文关系来提供更全面的查询意图理解。

  • 识别记忆过滤:在检索过程中,识别记忆作为一个过滤器,确保只有相关的三元组被保留。这一步骤通过使用 LLM 来过滤检索到的三元组,确保检索结果的准确性。

  • 个性化 PageRank 搜索:应用个性化 PageRank(PPR)算法进行上下文感知的检索。PPR 算法根据种子节点的排名分数和重置概率进行随机游走,以获取最相关的段落。HippoRAG 2 在此过程中平衡了短语节点和段落节点的影响,以确保检索结果的有效性。

  • 最终 QA 任务:检索到的段落作为上下文输入,用于最终的问答任务。通过这种方式,HippoRAG 2 能够在问答过程中有效地利用检索到的外部信息。

三、HippoRAG 2 的测评效果

3.1 问答性能

上图展示了使用Llama-3.3-70B-Instruct作为问答阅读器的多个RAG基准测试中不同检索器的问答性能。

HippoRAG 2取得了最高的平均F1分数,显示出在不同设置下的鲁棒性。

大型Embedding模型的表现优于小型模型,NV-Embed-v2(7B)的平均得分比GTR(T5-基础版)高出6.6%。这些模型还超越了结构增强的RAG方法,尽管计算成本较低,但主要在简单问答中表现出色。

注:结构化增强RAG包括:RAPTOR、GraphRAG、LightRAG、HippoRAG

与HippoRAG相比,HippoRAG 2显示出更大的改进,验证了其受神经心理学启发的方法。这些结果表明 HippoRAG 2作为最先进的RAG系统,增强了检索和问答性能。

3.2 检索性能

大型Embedding模型(7B)显著优于经典的较小LM模型,至少在F1分数上高出9.8%。

虽然使用Llama-3.3-70B-Instruct和NV-Embed-v2对HippoRAG进行复现时显示出轻微的改进,但收益很小,仅F1分数提高了1.3%。

尽管HippoRAG在以实体为中心的检索中表现出色,在PopQA上实现了最高的召回率,但它在大多数数据集上通常落后于最近的密集检索器和HippoRAG 2。

HippoRAG 2在大多数数据集上实现了最高的召回分数,与最强的密集检索器NV-Embed-v2相比,在MuSiQue和2Wiki上分别有5.0%和13.9%的显著提高。

3.3 消融实验

设计了针对所提出的链接方法、图构建方法和三元组过滤方法的消融实验,结果如下表。

引入的每个机制都提升了HippoRAG 2的性能。

  • 链接方法(Linking method):更深入的上下文链接方法带来了显著的性能提升。没有对NER到节点或查询到节点的方法应用过滤过程;然而,无论是否应用过滤,查询到三元组的方法始终优于其他两种链接策略。平均而言,查询到三元组比NER到节点提高了12.5%的召回率@5。

  • 图构建方法(Graph construction method):通过更深入的上下文链接方法,整体性能得到了提升。

  • 三元组过滤方法(triple filtering method):尽管识别记忆是重要组成部分,但三元组过滤的精度仍有改进空间。

本项目目前代码未开源,即将在原 HippoRAG 项目地址进行更新:https://github.com/OSU-NLP-Group/HippoRAG

  • 论文原文: https://arxiv.org/abs/2502.14802

四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

<think>嗯,用户问的是LightRAGGraphRAG之间的区别各自特点。首先,我需要明确这两个概念是什么,然后找出它们的不同之处。根据提供的引用,GraphRAG是微软提出的,可能涉及到知识图谱的结构,比如引用[2]提到的属性项属性值构建本体层。而LightRAG听起来像是轻量级的RAG,可能优化了处理流程,比如引用[3]提到的流程中的某个步骤简化了。 首先,我需要回忆RAG的基本原理,RAG通常结合检索生成,通过检索相关文档来增生成效果。引用[4]提到大模型在少量数据下的适应能力,可能RAG在这里帮助提升效果。GraphRAG可能利用图结构来更有效地组织信息,比如商品知识图谱中的类目属性,这样检索时可以利用图的关系提高准确性。而LightRAG可能注重效率,简化了传统RAG的流程,比如减少重排步骤或者优化检索速度。 接下来,需要比较两者的架构差异。GraphRAG可能构建复杂的图结构,节点代表实体或属性,边代表关系,这样在检索时能利用图遍历或图嵌入来找到更相关的上下文。而LightRAG可能采用更简洁的检索方式,比如直接向量相似度搜索,不需要复杂的图结构,从而减少资源消耗。 性能方面,GraphRAG因为图结构的处理可能需要更多计算资源,尤其是在构建维护图谱时,但检索质量可能更高,特别是在处理复杂查询时。LightRAG可能在响应速度上有优势,适合实时性要求高的场景,但可能在复杂推理上稍逊一筹。 应用场景的区别可能在于,GraphRAG适合需要深度关联复杂推理的领域,比如电商推荐、学术研究;LightRAG适合需要快速响应的场景,比如客服、实时翻译。 另外,引用[1]提到GraphRAG被微软提出后热度上升,但作者不建议盲目跟风,可能GraphRAG在某些情况下适用,但并非万能。而LightRAG作为轻量级方案,可能在资源有限的情况下更合适。 需要确保回答的结构清晰,分点列出差异,并引用相关文献。比如,架构差异引用[2][3],性能差异引用[4],应用场景引用[1][2]。同时生成相关问题,可能需要围绕技术原理、适用场景、优化方法等方面提问。</think>### LightRAGGraphRAG的主要区别及特点 #### 1. **架构设计差异** - **GraphRAG**:基于图结构构建知识体系,将实体、属性、关系以图节点边的形式组织(例如商品类目与属性值的关联[^2])。通过图遍历或图嵌入技术增检索能力,适合处理复杂关联性查询。 - **LightRAG**:采用轻量化检索流程(如简化“检索-重排-候选生成”链[^3]),通常依赖向量相似度搜索直接匹配内容,减少图结构的计算开销,注重实时性。 #### 2. **性能特点** - **GraphRAG**: - **优势**:检索质量高,能捕捉深层语义关联(如材质与品牌的组合关系),适用于需要推理的场景。 - **劣势**:图构建维护成本高,计算资源需求大。 - **LightRAG**: - **优势**:响应速度快,资源消耗低,适合高并发场景。 - **劣势**:对复杂逻辑的覆盖能力有限,可能遗漏间接关联信息。 #### 3. **应用场景** - **GraphRAG**:适合需要复杂推理的领域,如电商推荐(属性组合分析[^2])、学术知识关联分析。 - **LightRAG**:适用于实时性要求高的场景,如对话系统、快速问答。 #### 4. **技术实现** - **GraphRAG**:依赖图数据库或图神经网络(如知识图谱本体层),需预定义实体关系。 - **LightRAG**:多采用稠密向量检索(如直接相似度匹配),流程简化,无需复杂预处理。 #### 5. **适应性与扩展性** - **GraphRAG**:扩展需重新构图,灵活性较低,但可复用现有图谱结构。 - **LightRAG**:易于扩展新数据,仅需更新向量索引。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值