HomographyNet 使用深度学习进行图像的透视变换

本文介绍了如何利用HomographyNet进行图像的透视变换,该方法通过深度学习学习两幅图片之间的单应性矩阵。尽管CSDN上的相关资料较少,但作者分享了自己的GitHub仓库,提供了一个简单的环境要求和运行Demo的示例,尽管数据集创建和实际应用仍存在挑战,但该方法的思路具有研究价值。
摘要由CSDN通过智能技术生成

CSDN上对于这个框架的博客实在是太少了,没有作业可以抄就只能自己做作业了~

众所周知要做透视变换就要有两组点,一组是原始图像待变换的,另外一组是变换后的,每组4个点以上

简单说就是我有点A(x,y)我想把它投影到另一个平面上A' (x,y)

那么怎么确定这第二个坐标呢

就是用SIFT/SURF去求解图像的关键点特征向量也就是描述子 详情见上一篇博客

当你获得了两个图像间的坐标对应关系 你就可以用opencv把它图像拉平

但是如果你没有标准图怎么办呢? 我们需要机器有一些创造力 需要它自己知道变换到什么程度才是我们想要的

HomographyNet就是这样一个思路 输入一对图片 学习两幅图片之间的单应性矩阵也就是对应关系

通过把单应性矩阵作为输出标签变成一个回归问题

这里不再讲解HomographyNet的原理了 百度能搜到的基本全是原理

说说HomographyNet怎么使用吧(转载注明出处 https://blog.csdn.net/Andrwin

这是我自己的github:          https://github.com/4nthon/HomographyNet

这是代码原作者的github:       

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值