CSDN上对于这个框架的博客实在是太少了,没有作业可以抄就只能自己做作业了~
众所周知要做透视变换就要有两组点,一组是原始图像待变换的,另外一组是变换后的,每组4个点以上
简单说就是我有点A(x,y)我想把它投影到另一个平面上A' (x,y)
那么怎么确定这第二个坐标呢
就是用SIFT/SURF去求解图像的关键点特征向量也就是描述子 详情见上一篇博客
当你获得了两个图像间的坐标对应关系 你就可以用opencv把它图像拉平
但是如果你没有标准图怎么办呢? 我们需要机器有一些创造力 需要它自己知道变换到什么程度才是我们想要的
HomographyNet就是这样一个思路 输入一对图片 学习两幅图片之间的单应性矩阵也就是对应关系
通过把单应性矩阵作为输出标签变成一个回归问题
这里不再讲解HomographyNet的原理了 百度能搜到的基本全是原理
说说HomographyNet怎么使用吧(转载注明出处 https://blog.csdn.net/Andrwin)
这是我自己的github: https://github.com/4nthon/HomographyNet
这是代码原作者的github: