线性代数

一、线性方程组

在这里插入图片描述
在这里插入图片描述

三、矩阵、向量中元素的符号

四、矩阵中行向量、列向量

在这里插入图片描述

五、行向量 × 列向量 (向量内积)

在这里插入图片描述

六、列向量 × 行向量(向量外积)

在这里插入图片描述

七、矩阵 × 列向量 (按行写矩阵)

在这里插入图片描述

八、矩阵 × 列向量 (按列写矩阵)

在这里插入图片描述

九、行向量 × 矩阵 (矩阵按列写)

在这里插入图片描述

十、行向量 × 矩阵 (矩阵按行写)

在这里插入图片描述

十一、矩阵 × 矩阵 视为 行矩阵 × 列矩阵

在这里插入图片描述

十二、矩阵 × 矩阵 视为 列矩阵 × 行矩阵

在这里插入图片描述

十三、矩阵 × 矩阵(列向量的矩阵)

在这里插入图片描述

十四、矩阵(行向量的矩阵) × 矩阵

在这里插入图片描述

十五、矩阵乘法基本属性

在这里插入图片描述

十六、单位矩阵和对角矩阵

在这里插入图片描述

十七、转置

在这里插入图片描述

十八、对称矩阵

在这里插入图片描述

十九、矩阵的迹

在这里插入图片描述

二十、范数

在这里插入图片描述

二十一、线性相关性和秩

在这里插入图片描述

二十二、方阵的逆

在这里插入图片描述

二十三、正交阵

在这里插入图片描述

二十四、矩阵的值域和零空间

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二十五、行列式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二十六、二次型和半正定矩阵

在这里插入图片描述
在这里插入图片描述

二十七、特征值和特征向量

在这里插入图片描述
在这里插入图片描述

二十八、对称矩阵的特征值和特征向量

在这里插入图片描述
实对称矩阵特征值都是实数
实对称矩阵的特征向量单位化以后,能够彼此正交在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二十九、梯度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第一种情况Ax当做一个整体,得到2Ax,A是mn的矩阵,x是n1的矩阵,Ax是m*1的矩阵,这就产生了m维向量作为结果。

第二种情况将f(Ax) 再转换为 g(x),转换为对g(x)求梯度,x是n*1的向量,得到n为向量作为结果

三十、黑塞矩阵

在这里插入图片描述
在这里插入图片描述

三十一、二次函数和线性函数的梯度和黑塞矩阵

在这里插入图片描述
这里设的是 f ( x ) = b T x f(x)=b^Tx f(x)=bTx,这里面 b b b x x x都是用向量表示,所以可以用求和的形式表示 b i , x i b_i,x_i bi,xi的和。
f ( x ) f(x) f(x) x k x_k xk求偏导,可以得出是 b k b_k bk
在这里插入图片描述

三十二、最小二乘法

在这里插入图片描述

三十三、行列式的梯度

在这里插入图片描述
在这里插入图片描述

三十四、特征值优化

在这里插入图片描述

https://zhuanlan.zhihu.com/p/120074148

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值