图像质量评价指标-LOE

文章讨论了评价指标LOE在红外图像增强中的应用,提出两种改进方法:一是降分辨率计算,二是固定位置采样。通过对比实验显示ADPHE算法在自然度上优于其他方法。提供相关仿真代码以供复制和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、评价指标LOE

在文章《An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization》中,提到的了评价指标LOE(lightness-order-error),其反映增强图像自然程度,其值越小,增强图像与原图像亮度顺序越接近,即自然度保持得越好。

lightness-order-error (LOE) measure to evaluate the performance of our algorithm in naturalness preservation.

LOE计算公式如下:

L O E = 1 M ∗ N ∑ i = 1 M ∑ j = 1 N R D i , j LOE=\frac{1}{M*N}\sum_{i=1}^{M}\sum_{j=1}^{N}RD_{i,j}\\ LOE=MN1i=1Mj=1NRDi,j

其中,MN表示图像分辨率。RD表示相对亮度顺序差,公式如下:

R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y , L i , j ) ⊕ U ( L x , y e , L i , j e ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y},L_{i,j})\oplus U(L_{x,y}^e,L_{i,j}^e)) RDi,j=i=1Mj=1N(U(Lx,y,Li,j)U(Lx,ye,Li,je))

其中, ⊕ \oplus 表示异或操作, L L L表示原图, L e L^{e} Le表示处理图, U U U表示元素判断步骤,公式如下:

U ( A , B ) = { 1 , if A >=B 0 , if A<B U(A,B)=\begin{cases} 1, & \text{if A >=B} \\[2ex] 0, & \text{if A<B} \\ \end{cases} U(A,B)= 1,0,if A >=Bif A<B

其中,A、B表示对比对象。

注意,如果需要对比彩色RGB图像, L L L L e L^{e} Le需要进行以下处理:

L x , y = m a x c ∈ { R , G , B } I x , y c L_{x,y}=max_{c\in \{ R,G,B \}}I^{c}_{x,y}\\ Lx,y=maxc{R,G,B}Ix,yc


二、评价指标改进

LOE的缺点是需要对比原图某个点与处理图全局的大小关系,再加上全分辨率遍历之后,计算量陡然增加,处理大分辨率图像的时候耗时更长。

为了简化操作,节约计算时间,选择在图像中选择一些点位来计算LOE值。这些点位数量相对于全分辨率是极少的。

方法1、对图像进行降分辨率

对原图和处理图进行下采样降分辨率(不能用插值类降分辨率),得到 L d L^{d} Ld L e d L^{ed} Led,分别表示下采样后的原图和处理图,代入公式表示如下:

R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y d , L i , j d ) ⊕ U ( L x , y e d , L i , j e d ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y}^{d},L_{i,j}^{d})\oplus U(L_{x,y}^{ed},L_{i,j}^{ed})) RDi,j=i=1Mj=1N(U(Lx,yd,Li,jd)U(Lx,yed,Li,jed))

方法2、固定位置采样取点

行方向、列方向分别取 m m m, n n n个点,共取 m ∗ n m*n mn个点作为对比对象,得到 L d L^{d} Ld L e d L^{ed} Led,分别表示取样后的原图和处理图,代入公式表示如下:

R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y d , L i , j d ) ⊕ U ( L x , y e d , L i , j e d ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y}^{d},L_{i,j}^{d})\oplus U(L_{x,y}^{ed},L_{i,j}^{ed})) RDi,j=i=1Mj=1N(U(Lx,yd,Li,jd)U(Lx,yed,Li,jed))

例如,行列方向各取50个点,共对比2500个点位,相比全分辨率图像计算量大大降低。

三、评价指标对比效果

对马里奥图像进行LOE指标计算,选择固定位置采样取点进行指标计算,行列方向各取50个点,共对比2500个点位,因为选择的点位比较少,在最终的z指标进行累加,不在求均值。

L O E = ∑ i = 1 M ∑ j = 1 N R D i , j LOE=\sum_{i=1}^{M}\sum_{j=1}^{N}RD_{i,j}\\ LOE=i=1Mj=1NRDi,j

HEADPHE
LOE129730

从LOE指标来看,ADPHE算法的LOE指标更小,自然度更好,与原图更贴近。以下结果分别是原图、HE结果、ADPHE结果。

四、仿真代码

感兴趣的可以找论文复现或者看一下链接,运行LOE函数时间太长,可以运行LOE_b,按照方法2处理,减少计算量。

https://github.com/AomanHao/Matlab-Image-Evaluate/tree/master/Evaluate


我的个人博客主页,欢迎访问

我的CSDN主页,欢迎访问

我的GitHub主页,欢迎访问

我的知乎主页,欢迎访问

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AomanHao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值