文章目录
一、评价指标LOE
在文章《An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus histogram equalization》中,提到的了评价指标LOE(lightness-order-error),其反映增强图像自然程度,其值越小,增强图像与原图像亮度顺序越接近,即自然度保持得越好。
lightness-order-error (LOE) measure to evaluate the performance of our algorithm in naturalness preservation.
LOE计算公式如下:
L O E = 1 M ∗ N ∑ i = 1 M ∑ j = 1 N R D i , j LOE=\frac{1}{M*N}\sum_{i=1}^{M}\sum_{j=1}^{N}RD_{i,j}\\ LOE=M∗N1i=1∑Mj=1∑NRDi,j
其中,MN表示图像分辨率。RD表示相对亮度顺序差,公式如下:
R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y , L i , j ) ⊕ U ( L x , y e , L i , j e ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y},L_{i,j})\oplus U(L_{x,y}^e,L_{i,j}^e)) RDi,j=i=1∑Mj=1∑N(U(Lx,y,Li,j)⊕U(Lx,ye,Li,je))
其中, ⊕ \oplus ⊕表示异或操作, L L L表示原图, L e L^{e} Le表示处理图, U U U表示元素判断步骤,公式如下:
U ( A , B ) = { 1 , if A >=B 0 , if A<B U(A,B)=\begin{cases} 1, & \text{if A >=B} \\[2ex] 0, & \text{if A<B} \\ \end{cases} U(A,B)=⎩ ⎨ ⎧1,0,if A >=Bif A<B
其中,A、B表示对比对象。
注意,如果需要对比彩色RGB图像, L L L和 L e L^{e} Le需要进行以下处理:
L x , y = m a x c ∈ { R , G , B } I x , y c L_{x,y}=max_{c\in \{ R,G,B \}}I^{c}_{x,y}\\ Lx,y=maxc∈{R,G,B}Ix,yc
二、评价指标改进
LOE的缺点是需要对比原图某个点与处理图全局的大小关系,再加上全分辨率遍历之后,计算量陡然增加,处理大分辨率图像的时候耗时更长。
为了简化操作,节约计算时间,选择在图像中选择一些点位来计算LOE值。这些点位数量相对于全分辨率是极少的。
方法1、对图像进行降分辨率
对原图和处理图进行下采样降分辨率(不能用插值类降分辨率),得到 L d L^{d} Ld和 L e d L^{ed} Led,分别表示下采样后的原图和处理图,代入公式表示如下:
R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y d , L i , j d ) ⊕ U ( L x , y e d , L i , j e d ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y}^{d},L_{i,j}^{d})\oplus U(L_{x,y}^{ed},L_{i,j}^{ed})) RDi,j=i=1∑Mj=1∑N(U(Lx,yd,Li,jd)⊕U(Lx,yed,Li,jed))
方法2、固定位置采样取点
行方向、列方向分别取 m m m, n n n个点,共取 m ∗ n m*n m∗n个点作为对比对象,得到 L d L^{d} Ld和 L e d L^{ed} Led,分别表示取样后的原图和处理图,代入公式表示如下:
R D i , j = ∑ i = 1 M ∑ j = 1 N ( U ( L x , y d , L i , j d ) ⊕ U ( L x , y e d , L i , j e d ) ) RD_{i,j}=\sum_{i=1}^{M}\sum_{j=1}^{N}(U(L_{x,y}^{d},L_{i,j}^{d})\oplus U(L_{x,y}^{ed},L_{i,j}^{ed})) RDi,j=i=1∑Mj=1∑N(U(Lx,yd,Li,jd)⊕U(Lx,yed,Li,jed))
例如,行列方向各取50个点,共对比2500个点位,相比全分辨率图像计算量大大降低。
三、评价指标对比效果
对马里奥图像进行LOE指标计算,选择固定位置采样取点进行指标计算,行列方向各取50个点,共对比2500个点位,因为选择的点位比较少,在最终的z指标进行累加,不在求均值。
L O E = ∑ i = 1 M ∑ j = 1 N R D i , j LOE=\sum_{i=1}^{M}\sum_{j=1}^{N}RD_{i,j}\\ LOE=i=1∑Mj=1∑NRDi,j
HE | ADPHE | |
---|---|---|
LOE | 1297 | 30 |
从LOE指标来看,ADPHE算法的LOE指标更小,自然度更好,与原图更贴近。以下结果分别是原图、HE结果、ADPHE结果。
四、仿真代码
感兴趣的可以找论文复现或者看一下链接,运行LOE函数时间太长,可以运行LOE_b,按照方法2处理,减少计算量。
https://github.com/AomanHao/Matlab-Image-Evaluate/tree/master/Evaluate