【人体动作生成-综述】Human Motion Generation: A Survey

本文综述了人体动作生成领域的最新进展,包括基于文本、音频和场景条件的方法,以及数据集和评估指标。尽管取得了显著成就,但任务的复杂性与隐含关系仍是挑战。作者提供了深入的文献分析,以期激发未来研究解决未解决的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Human Motion Generation: A Survey 人体动作生成:综述

2023.6.20 TPAMI 2023

论文地址
王亦洲课题组 TPAMI 2023 入选论文解读:人体动作生成综述:方法、资源与挑战
TPAMI2023|人体运动生成:综述
请添加图片描述

Abstract

Human motion generation aims to generate natural human pose sequences and shows immense potential for real-world applications. Substantial progress has been made recently in motion data collection technologies and generation methods, laying the foundation for increasing interest in human motion generation. Most research within this field focuses on generating human motions based on conditional signals, such as text, audio, and scene contexts. While significant advancements have been made in recent years, the task continues to pose challenges due to the intricate nature of human motion and its implicit relationship with conditional signals. In this survey, we present a comprehensive literature review of human motion generation, which, to the best of our knowledge, is the first of its kind in this field. We begin by introducing the background of human motion and generative models, followed by an examination of representative methods for three mainstream sub-tasks: text-conditioned, audio-conditioned, and scene-conditioned human motion generation. Additionally, we provide an overview of common datasets and evaluation metrics. Lastly, we discuss open problems and outline potential future research directions. We hope that this survey could provide the community with a comprehensive glimpse of this rapidly evolving field and inspire novel ideas that address the outstanding challenges.

人体运动生成旨在生成自然的人体姿势序列,在现实世界的应用中显示出巨大的潜力。

近来,运动数据采集技术和生成方法取得了长足进步,为人类运动生成技术的发展奠定了基础。

该领域的大部分研究都集中在根据条件信号(如文本、音频和场景背景)生成人体运动。

虽然近年来取得了重大进展,但由于人体运动的复杂性及其与条件信号之间的隐含关系,这项任务仍面临挑战。

在本调查报告中,我们对人类运动生成进行了全面的文献综述,据我们所知,这在该领域尚属首次。

  • 我们首先介绍了人体运动和生成模型的背景,
  • 然后研究了三个主流子任务的代表性方法:文本条件、音频条件和场景条件人体运动生成。
  • 此外,我们还概述了常见的数据集和评估指标。
  • 最后,我们讨论了尚未解决的问题,并概述了潜在的未来研究方向。

我们希望这份调查报告能为社会各界提供对这一快速发展领域的全面了解,并启发新的想法,以解决悬而未决的挑战。

人体动作生成进展

请添加图片描述

人体动作生成方法

请添加图片描述

数据集

请添加图片描述

评估指标

请添加图片描述

人体姿势生成是指通过计算机算法和技术生成人体的姿势。在这个领域中,有许多方法和技术被提出来实现人体姿势的生成。其中一种常见的方法是使用深度学习技术,通过训练模型来从输入的图像或视频中估计人体的三维姿势。 在过去的几年中,许多研究工作都集中在使用单幅图像的二维姿势来生成三维姿势。这些方法通常使用卷积神经网络来提取图像中的特征,并使用回归模型来估计三维姿势。一些研究还引入了其他约束,如姿势的平滑性和关节之间的关系,以提高生成的姿势的准确性和稳定性。 另一种方法是使用多视角图像或视频来生成三维姿势。这些方法通常使用多个视角的二维姿势来估计三维姿势,并使用几何约束和优化算法来提高姿势的准确性。一些研究还尝试将时间信息引入到姿势生成中,以更好地捕捉动态姿势。 总的来说,人体姿势生成是一个复杂而有挑战性的问题,需要结合深度学习、计算机视觉和优化算法等多个领域的技术。目前,研究人员正在不断探索新的方法和技术,以提高人体姿势生成的准确性和稳定性。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [3D human pose 重要论文分类(持续更新)](https://blog.csdn.net/b_lack/article/details/105196711)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值