3D GAUSSIAN AS A NEW VISION ERA: A SURVEY(1)

ABSTRACT

3DGS has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF).

Figure

Figure 1

The optimization of 3DGS will be first introduced in terms of efficiency, realness, costs, and physics.

3DGS on reconstruction, manipulation, perception, generation, and human applications are comprehensively reviewed.

Figure 2

Taxonomy of existing 3DGS derived methods.

Figure 3

List of commonly used datasets for 3D Gaussians.

Figure 4

An illustration of optimizing 3DGS: (a) efficiency, (b) photorealism, (c) costs, and (d) physics

Efficiency

Challenges

Representing scenes with intricate details requires an enormous amount of 3D Gaussians. The tremendous storage space needed for Gaussians not only impedes its application on edge devices but also restrains the rendering speed.

Opportunities

Existing vector quantization and pruning of insignificant Gaussian methods have demonstrated their effectiveness in compressing 3D Gaussians for static scenes.

However, extending them to dynamic scenes and improving the compactness of dynamic representation are still underexplored.

Photorealism

Challenges

Although the projection of 3D Gaussians onto 2D image drastically accelerates the rendering process, it complicates the calculation of occlusion which leads to poor estimation of illumination.

In the meantime, the under-regularized 3DGS fails to capture precise geometry and cannot natively generate accurate normals.

Furthermore, the aliasing issue and artifacts

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

于初见月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值