介绍
杨辉三角的最本质特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
分析
每行的第一个 和最后一个元素的值为1,设第x行的第y个元素为c(x,y),递归结束条件为x等于y或y等于1,否则c(x,y)=c(x-1,y)+c(x-1,y-1)。
代码
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
//递归函数
int c(int x,int y)
{
int z;
if(y==1 || y==x)
return 1;
z=c(x-1,y-1)+c(x-1,y);
return z;
}
//非递归函数
void cc(int n)
{
int a[100][100];
int i,j;
for(i=0;i<n;i++)
{
a[i][0]=1;
a[i][i]=1;
}
for(i=2;i<n;i++)
for(j=1;j<n-1;j++)
a[i][j]=a[i-1][j-1]+a[i-1][j];
for(i=1;i<=n;i++)
{
for(j=1;j<2*n-2*i+1;j++)
printf(" ");
for(j=1;j<=i;j++)
{
//输出数字时保留间隙
printf("%4d",a[i-1][j-1]);
}
printf("\n");
}
}
int main()
{
int n;
//输入行数
printf("请输入杨辉三角的行数:");
scanf("%d",&n);
cc(n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<2*n-2*i+1;j++)
//打印空格
printf(" ");
for(int j=1;j<=i;j++)
//打印数字时保留间隔
printf("%4d",c(i,j));
printf("\n");
}
system("pause");
return 0;
}
遇到的问题
最开始我是想直接用n*n数组保存杨辉三角的两条为1的斜边,其余为0,然后遍历用杨辉三角的特性来加数,最后发现有个Bug,就是数1会被重置,是行不通的。