【AI大模型应用开发】【LangChain系列】实战案例1:用LangChain写Python代码并执行来生成答案

  • 大家好,我是同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

在这里插入图片描述


本文通过一个案例来学习下如何让 LangChain 写代码并自动执行输出结果。

本文案例来自:https://python.langchain.com/docs/expression_language/cookbook/code_writing

0. 完整代码

先来跑通demo代码

f
### 大模型应用开发实战项目案例与教程 #### 使用大模型构建智能客服系统 通过《大模型项目实战:多领域智能应用开发》,可以学习到如何利用大型预训练语言模型来创建一个能够处理多种客户查询的智能客服系统[^1]。书中不仅涵盖了基础知识,还提供了详细的实现指南。 ```python from langchain import PromptTemplate, LLMChain from transformers import pipeline def create_customer_service_bot(): nlp_pipeline = pipeline('text-generation', model='gpt-neo-2.7B') template = """You are a customer service representative. Answer the following question based on company policy and knowledge base: {question}""" prompt = PromptTemplate(template=template, input_variables=["question"]) llm_chain = LLMChain(prompt=prompt, llm=nlp_pipeline) return llm_chain ``` 此代码片段展示了如何基于`transformers`库中的文本生pipeline和LangChain框架下的提示模板及链式逻辑,快速搭建起一个简单的客户服务聊天机器人原型。 #### 构建个性化推荐系统的实例分析 在极客时间AI大模型应用开发实战营中提到过,借助于先进的自然语言理解和生能力,可以为用户提供更加精准的商品或内容建议服务[^2]。具体来说就是采用协同过滤算法结合深度神经网络来进行特征提取,最终由强大的LLM完解释说明工作。 #### 利用Agent模块自动化任务流控制 根据AI大模型应用开发实战营的内容,在面对复杂业务场景时,可以通过定义自定义agent来自适应调整不同阶段所需的操作序列[^3]。这种方式允许开发者更灵活地应对各种变化情况而不必每次都重整个程序流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

同学小张

如果觉得有帮助,欢迎给我鼓励!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值