经典网络—DeiT:高效的数据蒸馏视觉Transformer

经典网络—DeiT:高效的数据蒸馏视觉Transformer

1. 引言

近年来,Transformer 在计算机视觉(CV)领域取得了显著突破。ViT(Vision Transformer)虽然具有出色的性能,但对大规模数据依赖较强,导致训练成本较高。Facebook AI 提出的 DeiT(Data-efficient Image Transformer) 通过 数据蒸馏(Distillation) 方法,显著降低了对大规模数据的依赖,使得 Transformer 在 CV 任务中更高效。

2. DeiT 简介

DeiT 由 Facebook AI 研究团队在论文"Training data-efficient image transformers & distillation through attention"中提出。它主要解决 ViT 需要大量数据预训练 的问题,关键方法包括:

  • 数据蒸馏(Distillation through Attention)
  • 蒸馏 Token(Distillation Token)
  • 高效的训练策略

3. DeiT 关键技术

3.1 数据蒸馏(Distillation through Attention)

传统知识蒸馏(Knowledge Distillation)通常用于 CNN 模型,其中一个训练好的教师网络(Teacher)指导较小的学生网络(Student)。但在 DeiT 中,蒸馏方法被 无缝集成到 Transformer 训练过程 中,并引入了 蒸馏 Token(Distillation Token)

3.2 蒸馏 Token(Distillation Token)

在 ViT 结构中,输入图像被分割成多个 Patch,并添加 CLS Token 进行分类。而在 DeiT 中,

  • 额外引入了 Distillation Token
  • 它与 CLS Token 共同参与注意力机制
  • 通过 教师网络(通常是 CNN) 进行监督

这种方法 不增加计算量,却能提升模型的样本利用效率。

3.3 DeiT 训练策略

  • 优化器:AdamW
  • 数据增强:RandAugment、Mixup、CutMix
  • 正则化:Stochastic Depth、Label Smoothing
  • 学习率策略:Cosine Decay

这些优化方法,使 DeiT 不依赖大规模数据 也能取得良好效果。

4. DeiT 代码示例

可以使用 timm 库快速调用预训练模型:

import torch
import timm

# 加载 DeiT 模型(DeiT-small 预训练)
model = timm.create_model('deit_small_distilled_patch16_224', pretrained=True)
model.eval()

# 测试一张随机图片
x = torch.randn(1, 3, 224, 224)
y = model(x)
print(y.shape)  # 输出类别预测

如果想要 微调 DeiT,可以使用 PyTorch 训练自己的数据集。

5. DeiT 与 ViT 对比

特性ViTDeiT
依赖数据需要大规模数据可在小数据集上训练
蒸馏机制有(Distillation Token)
计算开销较低
训练策略标准训练数据增强 + 知识蒸馏

6. 结论

DeiT 通过 数据蒸馏、蒸馏 Token 和优化训练策略,成功减少了 ViT 对大规模数据的依赖,使 Transformer 在计算机视觉任务中更高效。对于资源受限的研究者或企业,DeiT 提供了 高效的 Transformer 解决方案,可用于分类、目标检测等任务。

你对 DeiT 有什么看法?欢迎在评论区交流! 🎯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值