DeiT详解:知识蒸馏的Transformer

DeiT是Facebook与索邦大学合作提出的一种利用知识蒸馏技术优化Transformer模型的方法,旨在解决ViT模型训练数据需求大、运算速度慢的问题。通过知识蒸馏,DeiT模型能在仅使用ImageNet数据的情况下,达到与先进CNN相当的性能,且训练更快。论文介绍了知识蒸馏的背景、理论原理,并展示了DeiT如何在Transformer中应用知识蒸馏。
摘要由CSDN通过智能技术生成

0. 引言

针对 ViT 需求数据量大、运算速度慢的问题,Facebook 与索邦大学 Matthieu Cord 教授合作发表 Training data-efficient image transformers(DeiT) & distillation through attentionDeiT知识蒸馏的策略与 ViT 相结合,性能与最先进的卷积神经网络(CNN)可以抗衡。

论文名称:Training data-efficient image transformers & distillation through attention
论文地址:https://arxiv.org/abs/2012.12877
代码地址:https://github.com/facebookresearch/deit

1. ViT

提到 DeiT ,就不提不提及 ViT 。这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sjx_alo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值