PyTorch_阿达玛积

阿达玛积指的是矩阵对应位置的元素相乘,可以使用乘号运算符,也可以使用mul函数来完成计算。


代码

import torch 
import numpy as np 

# 1. 使用 mul 函数
def test01():
    data1 = torch.tensor([[1, 2], [3, 4]])
    data2 = torch.tensor([[5, 6], [7, 8]])

    data = data1.mul(data2) 
    print(data) 

# 2. 使用 * 号运算符
def test02():
    data1 = torch.tensor([[1, 2], [3, 4]])
    data2 = torch.tensor([[5, 6], [7, 8]])

    data = data1 * data2 
    print(data)

if __name__ == "__main__":
    test01()
    test02() 


### PyTorchPyTorch_Lightning 的版本差异及兼容性 对于不同版本的 PyTorch 以及对应的 Python 版本,存在特定版本的 `pytorch_lightning` 能够提供最佳性能和支持。理解这些依赖关系有助于开发者选择合适的库版本组合来启动项目。 #### PyTorch Lightning 和 PyTorch 的版本对应关系 当考虑 PyTorch Lightning (PL) 和 PyTorch 的搭配使用时,重要的是要确认两者之间的版本兼容性。通常情况下,较新的 PL 版本能支持多个旧版 PyTorch,但也可能引入仅适用于最新 PyTorch 发布的功能特性[^1]。 例如,在某些情况下,如果选择了 PyTorch 1.8.x,则可以安全地运行大多数低于等于指定最高版本号的 pytorch_lightning 版本。然而,为了获得最新的 bug 修复和功能改进,建议尽可能保持两者的同步升级[^2]。 #### PythonPyTorchPyTorch Lightning 的版本匹配指南 除了关注 PyTorchPyTorch Lightning 自身的版本外,还需要注意所使用的 Python 解释器版本是否也满足要求。官方文档提供了详细的表格说明了三者之间推荐的最佳实践配置方案,这可以帮助避免潜在的技术障碍并确保开发环境稳定可靠。 ```python import torch print(torch.__version__) # 查看当前安装的 PyTorch 版本 import pytorch_lightning as pl print(pl.__version__) # 查看当前安装的 PyTorch Lightning 版本 ``` 通过上述代码片段可以在本地环境中验证已安装组件的具体版本信息,从而判断其是否符合预期的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值