一种用于航天器姿态跟踪的新型角速度观测器(二)
A new angular velocity observer for attitude tracking of spacecraft
ISATransactions 130 (2022) 377–388
DOI:10.1016/j.isatra.2022.03.025
摘要:
本文提出了一种基于收缩分析的新型航天器姿态跟踪角速度观测器。观测器在惯性参考系中通过估计惯性角动量来设计,以避免在体坐标系中表示航天器动力学时角速度的平方项。它采用由简单的一阶线性滤波器生成的连续角速度相关创新项,而不是角速度观测器设计中常用的不连续姿态相关创新项,从而产生平滑的行为。实现了全局指数收敛。此外,当与本文设计的指数收敛跟踪控制器相结合时,它给出了一个依赖于分离特性的指数稳定性的整体系统。最后,引入具有滞后的切换函数来稳定配置空间中的最接近平衡点,实现全局指数稳定性。通过数值模拟来说明所提出的观测器在闭环中的性能,与类似结果的比较,以及在惯性参数不确定性和噪声测量下的稳健性验证。
关键词: 角速度观测器 收缩分析 全局指数收敛 分离特性 航天器
4.2. 全状态反馈姿态控制器
本节设计一个姿态跟踪控制器,假设姿态和角速度都可以反馈。控制律如下:
τ = M ω ˙ r − S ( M ω ) ω r − K c ( ω − ω r ) − 1 2 z \tau = M \dot{\omega}_r - S(M \omega) \omega_r - K_c (\omega - \omega_r) - \frac{1}{2} z τ=Mω˙r−S(Mω)ωr−Kc(ω−ωr)−21z
ω ˙ r = 2 λ c 2 z + λ c G ( z ) ω r + R T ( e ) ω ˙ d − ( λ c G ( z ) − S ( R T ( e ) ω d ) ) ω \dot{\omega}_r = \frac{2 \lambda_c^2}{z} + \lambda_c G(z) \omega_r + R^T(e) \dot{\omega}_d - \left( \lambda_c G(z) - S(R^T(e) \omega_d) \right) \omega ω˙r=z2λc2+λcG(z)ωr+RT(e)ω˙d−(λcG(z)−S(RT(e)ωd))ω
其中 K c ∈ R 3 × 3 K_c \in \mathbb{R}^{3 \times 3} Kc∈R3×3 , K c = K c T > 0 K_c = K_c^T > 0 Kc=KcT>0 和 λ c > 0 \lambda_c > 0 λc>0 是控制器增益。
定理 3(全状态反馈姿态跟踪控制器的指数收敛)。 让控制器增益选择为使得 K c > 0 K_c > 0 Kc>0 和 λ c > 0 \lambda_c > 0 λc>0 。然后,与系统 (2) 和 (4) 闭环的控制律 (31)–(32) 从任何初始条件 [ ω T ( 0 ) , z ( 0 ) T ] T ∈ X c : = R 3 × B z [\omega^T(0), z(0)^T]^T \in X_c := \mathbb{R}^3 \times B_z [ωT(0),z(0)T]T∈Xc:=R3×Bz 以指数方式驱动 ω → ω d \omega \to \omega_d ω→ωd 和 z → 0 3 × 1 z \to 0_{3 \times 1} z→03×1 。因此, e → 1 ^ e \to \hat{1} e→1^ 以指数方式驱动 $\forall e(0) \in B_e := { e = (e_0, e_v) \in S^3 \mid -1 < -\cos(\epsilon_z) \leq e_0 \leq 1 } $ 。
证明 对于收缩分析,控制律 (31) 表示为:
M ω ˙ r = S ( M ω ) ω r + K c ( ω − ω r ) + 1 2 G T ( z ) z + τ M \dot{\omega}_r = S(M \omega) \omega_r + K_c (\omega - \omega_r) + \frac{1}{2} G^T(z) z + \tau Mω˙r=S(Mω)ωr+Kc(ω−ωr)+21GT(z)z+τ
其中 x 2 T = [ ω T , z d T ] x_2^T = [\omega^T, z^T_d] x2T=[ωT,zdT] 、 x ˉ 2 T = [ ω r T , z T ] \bar{x}_2^T = [\omega^T_r, z^T] xˉ2T=[ωrT,zT] 、 z d = 0 3 × 1 z_d = 0_{3 \times 1} zd=03×1 以及 G T ( z ) z = z G^T(z) z = z GT(z)z=z 的事实被考虑在内。回想一下运动学 (29) 是:
z ˙ = − λ c z + 1 2 G ( z ) ( ω − ω r ) \dot{z} = -\lambda_c z + \frac{1}{2} G(z) (\omega - \omega_r) z˙=−λcz+21G(z)(ω−ωr)
目标系统的动力学由车身框架 (2) 中的旋转动力学和所需动力学 z d z_d zd 组成,如下所示:
M ω ˙ = S ( M ω ) ω + τ M \dot{\omega} = S(M \omega) \omega + \tau Mω˙=S(Mω)ω+τ
z ˙ d = − λ c z d , z d ( 0 ) = 0 \dot{z}_d = -\lambda_c z_d, \quad z_d(0) = 0 z˙d=−λczd,zd(0)=0
控制器 (33) 和 (34) 以及目标系统 (35)–(36) 的分析形式表明以下虚拟系统:
M 2 ξ ˙ 2 = f ˉ 2 ( ξ 2 , x 2 ) + τ ˉ M_2 \dot{\xi}_2 = \bar{f}_2(\xi_2, x_2) + \bar{\tau} M2ξ˙2=fˉ2(ξ2,x2)+τˉ
其中 f ˉ 2 T ( ξ 2 , x 2 ) = [ f ˉ 21 T ( ξ 2 , x 2 ) , f ˉ 22 T ( ξ 2 , x 2 ) ] \bar{f}_2^T(\xi_2, x_2) = [\bar{f}_{21}^T(\xi_2, x_2), \bar{f}_{22}^T(\xi_2, x_2)] fˉ2T(ξ2,x2)=[fˉ21T(ξ2,x2),fˉ22T(ξ2,x2)] 、 ξ 2 T = [ ξ 21 T , ξ 22 T ] \xi_2^T = [\xi_{21}^T, \xi_{22}^T] ξ2T=[ξ21T,ξ22T] 、 x 2 T = [ x 21 T , x 22 T ] x_2^T = [x_{21}^T, x_{22}^T] x2T=[x21T,x22T] 、 τ ˉ T = [ τ T , 0 3 × 1 ] \bar{\tau}^T = [\tau^T, 0_{3 \times 1}] τˉT=[τT,03×1] 和 $M_2 := \text{diag} { M, I_3 } $ 。请注意, f ˉ 2 ( ξ 2 , x 2 ) \bar{f}_2(\xi_2, x_2) fˉ2(ξ2,x2) 与 (35)–(36) 中的动态系统 f 2 ( x 2 ) f_2(x_2) f2(x2) 至 f ˉ 2 ( x 2 , x 2 ) = f 2 ( x 2 ) \bar{f}_2(x_2, x_2) = f_2(x_2) fˉ2(x2,x2)=f2(x2) 相关联,后者在凸集 X c X_c Xc 中定义。还请注意,以这种方式定义的虚拟系统有两个特定解: ξ 2 = x ˉ 2 \xi_2 = \bar{x}_2 ξ2=xˉ2 和 ξ 2 = x 2 \xi_2 = x_2 ξ2=x2 ,分别对应于闭环系统 (33)–(34) 的轨迹和目标系统 (35)–(36) 的轨迹。
虚拟系统(37)的微分动力学由下式给出:
M 2 δ ξ ˙ 2 = J c δ ξ 2 M_2 \delta \dot{\xi}_2 = J_c \delta \xi_2 M2δξ˙2=Jcδξ2
其中 J c J_c Jc 是虚拟系统 (37) 的雅可比矩阵,其公式如下:
J c = [ − K c 0 3 × 3 0 3 × 3 − λ c I 3 ] + [ S ( M ω ) 1 2 G T ( z ) − 1 2 G ( z ) 0 3 × 3 ] J_c = \begin{bmatrix} -K_c & 0_{3 \times 3} \\ 0_{3 \times 3} & -\lambda_c I_3 \end{bmatrix} + \begin{bmatrix} S(M \omega) & \frac{1}{2} G^T(z) \\ -\frac{1}{2} G(z) & 0_{3 \times 3} \end{bmatrix} Jc=[−Kc03×303×3−λcI3]+[S(Mω)−21G(z)21GT(z)03×3]
以 M 2 M_2 M2 作为 δ ξ 2 \delta \xi_2 δξ2 平方距离的度量,定义为 V 2 = δ ξ 2 T M 2 δ ξ 2 V_2 = \delta \xi_2^T M_2 \delta \xi_2 V2=δξ2TM2δξ2 ,并注意到 J c J_c Jc 的对称部分为:
J s , c = J c + J c T 2 = − diag { K c , λ c I 3 } J_{s,c} = \frac{J_c + J_c^T}{2} = -\text{diag} \{ K_c, \lambda_c I_3 \} Js,c=2Jc+JcT=−diag{Kc,λcI3}
V 2 V_2 V2 的时间演变为:
V ˙ 2 = 2 δ ξ 2 T M 2 δ ξ ˙ 2 = 2 δ ξ 2 T J c δ ξ 2 = 2 δ ξ 2 T J s , c δ ξ 2 ≤ − λ ctr V 2 \dot{V}_2 = 2 \delta \xi_2^T M_2 \delta \dot{\xi}_2 = 2 \delta \xi_2^T J_c \delta \xi_2 = 2 \delta \xi_2^T J_{s,c} \delta \xi_2 \leq -\lambda_{\text{ctr}} V_2 V˙2=2δξ2TM2δξ˙2=2δξ2TJcδξ2=2δξ2TJs,cδξ2≤−λctrV2
其中 $\lambda_{\text{ctr}} := \lambda_{\text{min}}(J_{s,c}) \max { 1, \bar{m} } $ 。因此,虚拟系统 (37) 的收缩遵循附录 A 中的定理 7,收缩率为 λ ctr \lambda_{\text{ctr}} λctr 。其在 X c X_c Xc 中初始化的所有轨迹将保留在此集合中,并且任何一对轨迹 V 2 V_2 V2 之间的距离以指数方式收敛到零。特别是, x ˉ 2 ( t ) − x 2 ( t ) → 0 6 × 1 \bar{x}_2(t) - x_2(t) \to 0_{6 \times 1} xˉ2(t)−x2(t)→06×1 以指数方式收敛,这反过来简化了 ω r ( t ) − ω ( t ) → 0 3 × 1 \omega_r(t) - \omega(t) \to 0_{3 \times 1} ωr(t)−ω(t)→03×1 和 z ( t ) − z d ( t ) = z ( t ) → 0 3 × 1 z(t) - z_d(t) = z(t) \to 0_{3 \times 1} z(t)−zd(t)=z(t)→03×1 从任何初始条件 [ ω T ( 0 ) , z ( 0 ) T ] T ∈ X c [\omega^T(0), z(0)^T]^T \in X_c [ωT(0),z(0)T]T∈Xc 以指数方式收敛。因此, ω ( t ) → ω d ( t ) \omega(t) \to \omega_d(t) ω(t)→ωd(t) 和 e ( t ) → 1 ^ e(t) \to \hat{1} e(t)→1^ 以指数方式收敛到 ∀ [ ω ( 0 ) , e ( 0 ) ] ∈ R 3 × B e \forall [\omega(0), e(0)] \in \mathbb{R}^3 \times B_e ∀[ω(0),e(0)]∈R3×Be 。
4.3. 姿态反馈控制器
本节基于观测器以确定性等价的方式开发姿态反馈控制器。以下控制器具有与全状态反馈控制器相同的形式,但角速度 ω \omega ω 被观测器 (6)–(7) 的估计值 ω ^ \hat{\omega} ω^ 取代:
τ = M ω ^ ˙ r − S ( M ω ^ ) ω r − K c ( ω ^ − ω r ) − 1 2 z \tau = M \dot{\hat{\omega}}_r - S(M \hat{\omega}) \omega_r - K_c (\hat{\omega} - \omega_r) - \frac{1}{2} z τ=Mω^˙r−S(Mω^)ωr−Kc(ω^−ωr)−21z
ω ^ ˙ r = 2 λ c 2 z + λ c G ( z ) ω r + R T ( e ) ω ˙ d − ( λ c G ( z ) − S ( R T ( e ) ω d ) ) ω ^ \dot{\hat{\omega}}_r = \frac{2 \lambda_c^2}{z} + \lambda_c G(z) \omega_r + R^T(e) \dot{\omega}_d - \left( \lambda_c G(z) - S(R^T(e) \omega_d) \right) \hat{\omega} ω^˙r=z2λc2+λcG(z)ωr+RT(e)ω˙d−(λcG(z)−S(RT(e)ωd))ω^
定理 4(姿态反馈跟踪控制器的指数收敛)。 考虑姿态反馈控制器 (41)–(42),其中 ω ^ \hat{\omega} ω^ 是观测器 (6)–(7) 的输出。然后,与系统 (2) 和 (4) 闭环的观测器-控制器组合从任何初始条件 [ ω ^ T ( 0 ) , ω T ( 0 ) , z ( 0 ) T ] T ∈ X o c : = R 3 × R 3 × B z [\hat{\omega}^T(0), \omega^T(0), z(0)^T]^T \in X_{oc} := \mathbb{R}^3 \times \mathbb{R}^3 \times B_z [ω^T(0),ωT(0),z(0)T]T∈Xoc:=R3×R3×Bz 开始以指数方式驱动 ω ^ → ω \hat{\omega} \to \omega ω^→ω 、 ω → ω d \omega \to \omega_d ω→ωd 和 z → 0 3 × 1 z \to 0_{3 \times 1} z→03×1 。因此, e → 1 ^ e \to \hat{1} e→1^ 以指数方式驱动 ∀ e ( 0 ) ∈ B e \forall e(0) \in B_e ∀e(0)∈Be ,其中 B e B_e Be 在定理 3 中定义。
该证明是根据附录 B 中证明的以下引理建立的虚拟系统的收缩的结果,该虚拟系统由级联观测器和状态反馈控制器组成。
**引理 5(虚拟系统的收缩)。**定义以下虚拟系统:
ξ ˙ 1 = f ˉ 1 ( ξ 1 , x 1 ) + R ( q ) τ \dot{\xi}_1 = \bar{f}_1(\xi_1, x_1) + R(q) \tau ξ˙1=fˉ1(ξ1,x1)+R(q)τ
M 2 ξ ˙ 2 = f ˉ 2 ( ξ 1 , ξ 2 , x 1 , x 2 ) + τ ˉ M_2 \dot{\xi}_2 = \bar{f}_2(\xi_1, \xi_2, x_1, x_2) + \bar{\tau} M2ξ˙2=fˉ2(ξ1,ξ2,x1,x2)+τˉ
式中:
f ˉ 1 ( ξ 1 , x 1 ) = 1 2 k o H T ( q f ) H ( q ) I M − 1 ( x 1 − ξ 1 ) \bar{f}_1(\xi_1, x_1) = \frac{1}{2} k_o H^T(q_f) H(q) I_M^{-1} (x_1 - \xi_1) fˉ1(ξ1,x1)=21koHT(qf)H(q)IM−1(x1−ξ1)
f ˉ 2 ( ξ 1 , ξ 2 , x 1 , x 2 ) = [ f ˉ 21 ( ξ 1 , ξ 2 , x 1 , x 2 ) f ˉ 22 ( ξ 2 , x 2 ) ] = [ S ( M ω ) ξ 21 + K c ( x 21 − ξ 21 ) + 1 2 G T ( z ) ξ 22 + F r ( x 1 − ξ 1 ) − λ c ξ 22 + 1 2 G ( z ) ( x 21 − ξ 21 ) ] \bar{f}_2(\xi_1, \xi_2, x_1, x_2) = \begin{bmatrix} \bar{f}_{21}(\xi_1, \xi_2, x_1, x_2) \\ \bar{f}_{22}(\xi_2, x_2) \end{bmatrix} = \begin{bmatrix} S(M \omega) \xi_{21} + K_c (x_{21} - \xi_{21}) + \frac{1}{2} G^T(z) \xi_{22} + F_r (x_1 - \xi_1) \\ -\lambda_c \xi_{22} + \frac{1}{2} G(z) (x_{21} - \xi_{21}) \end{bmatrix} fˉ2(ξ1,ξ2,x1,x2)=[fˉ21(ξ1,ξ2,x1,x2)fˉ22(ξ2,x2)]=[S(Mω)ξ21+Kc(x21−ξ21)+21GT(z)ξ22+Fr(x1−ξ1)−λcξ22+21G(z)(x21−ξ21)]
和:
M 2 = diag { M , I 3 } , τ ˉ T = [ τ T , 0 1 × 3 ] M_2 = \text{diag} \{ M, I_3 \} , \quad \bar{\tau}^T = [\tau^T, 0_{1 \times 3}] M2=diag{M,I3},τˉT=[τT,01×3]
其中 x 1 = v x_1 = v x1=v 、 x 2 T = [ x 21 T , x 22 T ] = [ ω T , 0 1 × 3 ] x_2^T = [x_{21}^T, x_{22}^T] = [\omega^T, 0_{1 \times 3}] x2T=[x21T,x22T]=[ωT,01×3] ,以及:
F r = ( S ( ω r ) M + M S ( R T ( e ) ω d ) − λ c M G ( z ) − K c ) M − 1 R T ( q ) F_r = \left(S(\omega_r)M + MS(R^T(e) \omega_d) - \lambda_c M G(z) - K_c\right) M^{-1} R^T(q) Fr=(S(ωr)M+MS(RT(e)ωd)−λcMG(z)−Kc)M−1RT(q)
然后虚拟系统在集合 X o c X_{oc} Xoc 中的度量 $M_3 := \text{diag} { I_3, M_2 } $ 下收缩。
定理4的证明 观测器(6)–(7)和控制器(41)的分析形式为:
x ˉ ˙ 1 = f ˉ 1 ( x ˉ 1 , x 1 ) + R ( q ) τ \dot{\bar{x}}_1 = \bar{f}_1(\bar{x}_1, x_1) + R(q) \tau xˉ˙1=fˉ1(xˉ1,x1)+R(q)τ
M 2 x ˉ ˙ 2 = f ˉ 2 ( x ˉ 1 , x ˉ 2 , x 1 , x 2 ) + τ ˉ M_2 \dot{\bar{x}}_2 = \bar{f}_2(\bar{x}_1, \bar{x}_2, x_1, x_2) + \bar{\tau} M2xˉ˙2=fˉ2(xˉ1,xˉ2,x1,x2)+τˉ
其中 x ˉ 1 = v ^ \bar{x}_1 = \hat{v} xˉ1=v^ 和 x ˉ 2 T = [ x ˉ 21 T , x ˉ 22 T ] = [ ω ^ T , z T ] \bar{x}_2^T = [\bar{x}_{21}^T, \bar{x}_{22}^T] = [\hat{\omega}^T, z^T] xˉ2T=[xˉ21T,xˉ22T]=[ω^T,zT] 是观测器-控制器状态,而 x 1 = v x_1 = v x1=v 、 x 2 T = [ x 21 T , x 22 T ] = [ ω T , z d T ] x_2^T = [x_{21}^T, x_{22}^T] = [\omega^T, z^T_d] x2T=[x21T,x22T]=[ωT,zdT] 是目标系统状态。请注意, x ˉ T = [ x ˉ 1 T , x ˉ 2 T ] \bar{x}^T = [\bar{x}_1^T, \bar{x}_2^T] xˉT=[xˉ1T,xˉ2T] 是虚拟系统 (43)–(44) 的一个特定解。另一方面,该虚拟系统还有另一个特定解 x 1 = v x_1 = v x1=v 、 x 2 T = [ ω T , z d T ] x_2^T = [\omega^T, z^T_d] x2T=[ωT,zdT] ,分别对应于惯性系 (1) 中的旋转动力学、车身系 (2) 中的旋转动力学和所需运动学 z d = 0 3 × 1 z_d = 0_{3 \times 1} zd=03×1 。
根据引理 5,在 X o c X_{oc} Xoc 中初始化的整个系统 (45)–(46) 的所有轨迹将保留在此集合中,并且其任何一对轨迹之间的距离将以指数方式收敛到零,特别是 x ˉ ( t ) − x ( t ) → 0 9 × 1 \bar{x}(t) - x(t) \to 0_{9 \times 1} xˉ(t)−x(t)→09×1 以指数方式收敛,这反过来意味着 v ^ ( t ) − v ( t ) → 0 3 × 1 \hat{v}(t) - v(t) \to 0_{3 \times 1} v^(t)−v(t)→03×1 、 ω r ( t ) − ω ( t ) → 0 3 × 1 \omega_r(t) - \omega(t) \to 0_{3 \times 1} ωr(t)−ω(t)→03×1 和 z ( t ) − z d ( t ) → 0 3 × 1 z(t) - z_d(t) \to 0_{3 \times 1} z(t)−zd(t)→03×1 从任何初始条件 [ v ^ T ( 0 ) , ω T ( 0 ) , z ( 0 ) T ] T ∈ X o c [\hat{v}^T(0), \omega^T(0), z(0)^T]^T \in X_{oc} [v^T(0),ωT(0),z(0)T]T∈Xoc 以指数方式收敛。因此, ω ^ ( t ) → ω ( t ) \hat{\omega}(t) \to \omega(t) ω^(t)→ω(t) 、 ω ( t ) → ω d ( t ) \omega(t) \to \omega_d(t) ω(t)→ωd(t) 和 q ( t ) → q d ( t ) q(t) \to q_d(t) q(t)→qd(t) 也以指数方式收敛。
注释 4(分离性)。 依靠收缩分析,特别是虚拟系统的概念和级联系统的收缩,可以更透明地建立整体组合观测器-控制器系统的指数收敛。事实上,从附录 A 中的定理 10 和 (66) 中整体系统的收缩分析可以看出,组合观测器-控制器给出整体收缩系统,前提是:(1) 观测器 (6)-(7) 和全状态反馈控制器 (31)-(32) 是收缩的,并且 (2) 耦合项 F ˉ r \bar{F}_r Fˉr 是有界的。该属性,即级联观测器和控制器的收缩性赋予的分离性,使模块化设计成为可能,并有助于观测器和控制器的分析和实现。
注释 5(调整程序)。 从(66)中整体系统的微分动力学可以看出,角速度估计误差 ω ^ − ω \hat{\omega} - \omega ω^−ω 、姿态跟踪误差 z z z 和角速度跟踪误差 ω − ω d \omega - \omega_d ω−ωd 的收缩率与(6)–(7)中的观测器增益 k o k_o ko 以及(41)–(42)中的控制器增益 λ c \lambda_c λc 、 K c K_c Kc 以透明的方式相关,从而给出了组合观测器-控制器的调整程序如下:(1)选择(6)–(7)中的观测器增益 k o k_o ko ,使得定理 2 中的收缩率 λ o \lambda_o λo 处于合理水平,在对测量噪声的敏感性和收敛速度之间进行权衡,以及(2)选择(41)–(42)中的控制器增益 λ c \lambda_c λc 、 K c K_c Kc 以实现跟踪误差的期望收敛速度而不会导致控制饱和。
注释 6(对数四元数)。 (25) 中定义的表达式 z ( e ) z(e) z(e) 允许所提出的控制器 (41) 稳定唯一平衡点 z = 0 3 × 1 z = 0_{3 \times 1} z=03×1 。因此,它实现了四元数误差 e 0 → 1 e_0 \to 1 e0→1 的标量部分的指数收敛,从而实现了四元数误差 e ( t ) → 1 ^ e(t) \to \hat{1} e(t)→1^ 的指数收敛。众所周知,绕过四元数拓扑阻碍的全局稳定性只能通过下一小节中讨论的不连续控制律来实现。
4.4. 切换姿态反馈控制器
对于给定的初始条件 e ( 0 ) e(0) e(0) ,稳定最近点 e = 1 ^ e = \hat{1} e=1^ 或 e = − 1 ^ e = -\hat{1} e=−1^ 可以通过在控制器 (41)–(42) 中加入切换函数来实现,类似于 [12,36]。考虑以下具有滞后的切换变量:
h ˙ ( t ) = 0 , ∀ x ∈ C : = { x ∈ X c ∣ h e 0 ≥ − δ } \dot{h}(t) = 0, \forall x \in C := \{ x \in X_c \mid h e_0 \geq -\delta \} h˙(t)=0,∀x∈C:={x∈Xc∣he0≥−δ}
h + ( t ) = sgn ^ ( e 0 ( t ) ) , ∀ x ∈ D : = { x ∈ X c ∣ h e 0 ≤ − δ } h^+(t) = \hat{\text{sgn}}(e_0(t)), \forall x \in D := \{ x \in X_c \mid h e_0 \leq -\delta \} h+(t)=sgn^(e0(t)),∀x∈D:={x∈Xc∣he0≤−δ}
h ( 0 ) = sgn ^ ( e 0 ( 0 ) ) h(0) = \hat{\text{sgn}}(e_0(0)) h(0)=sgn^(e0(0))
其中 h + ( t ) h^+(t) h+(t) 表示切换后的 h ( t ) h(t) h(t) , δ ≥ 0 \delta \geq 0 δ≥0 表示滞后的半宽。函数 $\hat{\text{sgn}}(e_0) \in H := { 1, -1 } $ 定义为
sgn ^ ( e 0 ) = { 1 , if e 0 ≥ 0 − 1 , if e 0 < 0 \hat{\text{sgn}}(e_0) = \begin{cases} 1, & \text{if } e_0 \geq 0 \\ -1, & \text{if } e_0 < 0 \end{cases} sgn^(e0)={1,−1,if e0≥0if e0<0
所提出的切换控制器是通过在控制器 (41)–(42) 中用 h e h e he 替换四元数误差 e e e 得到的,即
τ = M ω ^ ˙ r − S ( M ω ^ ) ω r − K c ( ω ^ − ω r ) − 1 2 z ( h e ) \tau = M \dot{\hat{\omega}}_r - S(M \hat{\omega}) \omega_r - K_c (\hat{\omega} - \omega_r) - \frac{1}{2} z(h e) τ=Mω^˙r−S(Mω^)ωr−Kc(ω^−ωr)−21z(he)
ω ^ ˙ r = 2 λ c 2 z ( h e ) + λ c G ( z ( h e ) ) ω r + R T ( e ) ω ˙ d − ( λ c G ( z ( h e ) ) − S ( R T ( e ) ω d ) ) ω ^ \dot{\hat{\omega}}_r = 2 \lambda_c^2 z(h e) + \lambda_c G(z(h e)) \omega_r + R^T(e) \dot{\omega}_d - \left( \lambda_c G(z(h e)) - S(R^T(e) \omega_d) \right) \hat{\omega} ω^˙r=2λc2z(he)+λcG(z(he))ωr+RT(e)ω˙d−(λcG(z(he))−S(RT(e)ωd))ω^
请注意,(50) 中的旋转矩阵保持不变,因为根据 Rodrigues 公式 (3), R ( h e ) = R ( e ) R(h e) = R(e) R(he)=R(e) 。
定理6 (切换姿态反馈控制器的全局指数收敛)
考虑切换姿态反馈控制器 (49)–(50),其中 ω ^ \hat{\omega} ω^ 是观测器 (6)–(7) 的输出。然后,与系统 (2) 和 (4) 闭环的观测器-控制器组合从任何初始条件 [ ω ^ T ( 0 ) , ω T ( 0 ) , z ( 0 ) T , h ( 0 ) ] T ∈ X h , o c : = R 3 × R 3 × B h , z × H [\hat{\omega}^T(0), \omega^T(0), z(0)^T, h(0)]^T \in X_{h,oc} := \mathbb{R}^3 \times \mathbb{R}^3 \times B_{h,z} \times H [ω^T(0),ωT(0),z(0)T,h(0)]T∈Xh,oc:=R3×R3×Bh,z×H 开始以指数方式驱动 ω ^ → ω \hat{\omega} \to \omega ω^→ω 、 ω → ω d \omega \to \omega_d ω→ωd 和 z → 0 3 × 1 z \to 0_{3 \times 1} z→03×1 ,其中
B h , z = { z ∈ R 3 ∣ − 1 < − cos ( ϵ z ) ≤ h e 0 ≤ 1 } B_{h,z} = \{ z \in \mathbb{R}^3 \mid -1 < -\cos(\epsilon_z) \leq h e_0 \leq 1 \} Bh,z={z∈R3∣−1<−cos(ϵz)≤he0≤1}
因此, e → ± 1 ^ e \to \pm \hat{1} e→±1^ 以指数方式增长 ∀ e ( 0 ) ∈ S 3 \forall e(0) \in S^3 ∀e(0)∈S3 。
**证明:**证明遵循与定理 4 的证明相同的思路,这里仅作概述。
步骤 1:(在集合 X h , o c X_{h,oc} Xh,oc 中度量 M 3 M_3 M3 下的虚拟系统的收缩)。考虑虚拟系统
ξ ˙ 1 = f ˉ h , 1 ( ξ 1 , x 1 ) + R ( q ) τ \dot{\xi}_1 = \bar{f}_{h,1}(\xi_1, x_1) + R(q) \tau ξ˙1=fˉh,1(ξ1,x1)+R(q)τ
M 2 ξ ˙ 2 = f ˉ h , 2 ( ξ 1 , ξ 2 , x 1 , x 2 ) + τ ˉ M_2 \dot{\xi}_2 = \bar{f}_{h,2}(\xi_1, \xi_2, x_1, x_2) + \bar{\tau} M2ξ˙2=fˉh,2(ξ1,ξ2,x1,x2)+τˉ
式中
f ˉ h , 1 ( ξ 1 , x 1 ) = 1 2 k o H T ( q f ) H ( q ) I M − 1 ( x 1 − ξ 1 ) \bar{f}_{h,1}(\xi_1, x_1) = \frac{1}{2} k_o H^T(q_f) H(q) I_M^{-1} (x_1 - \xi_1) fˉh,1(ξ1,x1)=21koHT(qf)H(q)IM−1(x1−ξ1)
f ˉ h , 2 ( ξ 1 , ξ 2 , x 1 , x 2 ) = [ f ˉ h , 21 ( ξ 1 , ξ 2 , x 1 , x 2 ) f ˉ h , 22 ( ξ 2 , x 2 ) ] = [ S ( M ω ) ξ 21 + K c ( x 21 − ξ 21 ) + 1 2 G T ( z ( h e ) ) ξ 22 + F h , r ( x 1 − ξ 1 ) − λ c ξ 22 + 1 2 G ( z ( h e ) ) ( x 21 − ξ 21 ) ] \bar{f}_{h,2}(\xi_1, \xi_2, x_1, x_2) = \begin{bmatrix} \bar{f}_{h,21}(\xi_1, \xi_2, x_1, x_2) \\ \bar{f}_{h,22}(\xi_2, x_2) \end{bmatrix} = \begin{bmatrix} S(M \omega) \xi_{21} + K_c (x_{21} - \xi_{21}) + \frac{1}{2} G^T(z(h e)) \xi_{22} + F_{h,r} (x_1 - \xi_1) \\ -\lambda_c \xi_{22} + \frac{1}{2} G(z(h e)) (x_{21} - \xi_{21}) \end{bmatrix} fˉh,2(ξ1,ξ2,x1,x2)=[fˉh,21(ξ1,ξ2,x1,x2)fˉh,22(ξ2,x2)]=[S(Mω)ξ21+Kc(x21−ξ21)+21GT(z(he))ξ22+Fh,r(x1−ξ1)−λcξ22+21G(z(he))(x21−ξ21)]
和
F h , r = ( S ( ω r ) M + M S ( R T ( e ) ω d ) − λ c M G ( z ( h e ) ) − K c ) M − 1 R T ( q ) F_{h,r} = \left(S(\omega_r)M + MS(R^T(e) \omega_d) - \lambda_c M G(z(h e)) - K_c \right) M^{-1} R^T(q) Fh,r=(S(ωr)M+MS(RT(e)ωd)−λcMG(z(he))−Kc)M−1RT(q)
观察到 F h , r F_{h,r} Fh,r 有界,其边界与 F r F_r Fr 相同。虚拟系统 (51)–(52) 是一个连续时间切换系统,其离散状态为 (47)(参见附录中的方程 (65))。由于 $h \in { 1, -1 } $ ,因此只有两个不同的矢量场。每个单独的虚拟系统在度量 M 3 M_3 M3 下的收缩由定理 4 的证明得出。也就是说,考虑一个固定的 h h h ,特定虚拟系统 (51)–(52) 的微分动力学由下式给出
M 3 [ δ ξ ˙ 1 δ ξ ˙ 2 ] = [ J 0 0 3 × 6 − F ˉ h , r J c , h ] [ δ ξ 1 δ ξ 2 ] M_3 \begin{bmatrix} \delta \dot{\xi}_1 \delta \dot{\xi}_2 \end{bmatrix} = \begin{bmatrix} J_0 & 0_{3 \times 6} - \bar{F}_{h,r} & J_{c,h} \end{bmatrix} \begin{bmatrix} \delta \xi_1 \\ \delta \xi_2 \end{bmatrix} M3[δξ˙1δξ˙2]=[J003×6−Fˉh,rJc,h][δξ1δξ2]
其中 F ˉ h , r T = [ F h , r T , 0 3 × 3 ] \bar{F}_{h,r}^T = [F_{h,r}^T, 0_{3 \times 3}] Fˉh,rT=[Fh,rT,03×3] 和 J c , h J_{c,h} Jc,h 定义为
J c , h = [ − K c 0 3 × 3 0 3 × 3 − λ c I 3 ] + [ S ( M ω ) 1 2 G T ( z ( h e ) ) − 1 2 G ( z ( h e ) ) 0 3 × 3 ] J_{c,h} = \begin{bmatrix} -K_c & 0_{3 \times 3} \\ 0_{3 \times 3} & -\lambda_c I_3 \end{bmatrix} + \begin{bmatrix} S(M \omega) & \frac{1}{2} G^T(z(h e)) \\ -\frac{1}{2} G(z(h e)) & 0_{3 \times 3} \end{bmatrix} Jc,h=[−Kc03×303×3−λcI3]+[S(Mω)−21G(z(he))21GT(z(he))03×3]
令 V 4 = δ ξ T M 3 δ ξ V_4 = \delta \xi^T M_3 \delta \xi V4=δξTM3δξ 为虚拟系统 δ ξ T = [ δ ξ 1 T , δ ξ 2 T ] \delta \xi^T = [\delta \xi_1^T, \delta \xi_2^T] δξT=[δξ1T,δξ2T] 在度量 M 3 M_3 M3 下的解之间的平方距离。 V 4 V_4 V4 的时间演化由下式给出:
V ˙ 4 = 2 δ ξ T M 3 δ ξ ˙ = 2 δ ξ 1 T J 0 δ ξ 1 + 2 δ ξ 2 T F ˉ h , r δ ξ 1 + 2 δ ξ 2 T J c , h δ ξ 2 ≤ − 2 λ o ∥ δ ξ 1 ∥ 2 + 2 ∥ F ˉ h , r ∥ ∥ δ ξ 1 ∥ ∥ δ ξ 2 ∥ − 2 λ c t r ∥ δ ξ 2 ∥ 2 = − 2 [ ∥ δ ξ 1 ∥ ∥ δ ξ 2 ∥ ] T [ λ o 0 − ∥ F ˉ h , r ∥ λ c t r ] [ ∥ δ ξ 1 ∥ ∥ δ ξ 2 ∥ ] \begin{aligned} \dot{V}_4 &= 2 \delta \xi^T M_3 \delta \dot{\xi} \\ &= 2 \delta \xi_1^T J_0 \delta \xi_1 + 2 \delta \xi_2^T \bar{F}_{h,r} \delta \xi_1 + 2 \delta \xi_2^T J_{c,h} \delta \xi_2 \\ & \leq -2 \lambda_o \|\delta \xi_1\|^2 + 2 \|\bar{F}_{h,r}\| \|\delta \xi_1\| \|\delta \xi_2\| - 2 \lambda_{ctr} \|\delta \xi_2\|^2 \\ &= -2 \begin{bmatrix} \|\delta \xi_1\| \\ \|\delta \xi_2\| \end{bmatrix}^T \begin{bmatrix} \lambda_o & 0 - \|\bar{F}_{h,r}\| & \lambda_{ctr} \end{bmatrix} \begin{bmatrix} \|\delta \xi_1\| \\ \|\delta \xi_2\| \end{bmatrix} \end{aligned} V˙4=2δξTM3δξ˙=2δξ1TJ0δξ1+2δξ2TFˉh,rδξ1+2δξ2TJc,hδξ2≤−2λo∥δξ1∥2+2∥Fˉh,r∥∥δξ1∥∥δξ2∥−2λctr∥δξ2∥2=−2[∥δξ1∥∥δξ2∥]T[λo0−∥Fˉh,r∥λctr][∥δξ1∥∥δξ2∥]
其中 λ o > 0 \lambda_o > 0 λo>0 是观测器的收缩率,定义在定理 2 中; λ c t r > 0 \lambda_{ctr} > 0 λctr>0 是控制器的收缩率,定义在定理 3 的证明中。因此,通过选取足够大的 λ o \lambda_o λo , (53) 是负定的。此外,这个结果对 h h h 的两种模式都成立。同样,假设两个系统对所有的 t ≥ 0 t \geq 0 t≥0 共享相同的常数度量 M 3 M_3 M3 ,集合 X h , o c X_{h,oc} Xh,oc 中的连续时间切换系统 (51)–(52) 的收缩可由附录 A 中的定理 11 得出。对于控制律 (49)–(50) 下的任何闭环解,换向次数都是有界的,这由 [36] 中定理 5.3 的相同论证可知。
步骤 2:(观测器控制器向目标轨迹指数收敛)。请注意,观测器 (6)–(7) 和控制器 (49) 的分析形式如下
x ˉ ˙ 1 = f ˉ h , 1 ( x ˉ 1 , x 1 ) + R ( q ) τ M 2 x ˉ ˙ 2 = f h , 2 ( x ˉ 1 , x ˉ 2 , x 1 , x 2 ) + τ ˉ \dot{\bar{x}}_1 = \bar{f}_{h,1}(\bar{x}_1, x_1) + R(q) \tau \\ M_2 \dot{\bar{x}}_2 = f_{h,2}(\bar{x}_1, \bar{x}_2, x_1, x_2) + \bar{\tau} xˉ˙1=fˉh,1(xˉ1,x1)+R(q)τM2xˉ˙2=fh,2(xˉ1,xˉ2,x1,x2)+τˉ
是虚拟系统的一个特定解,即 ξ = [ x ˉ 1 T , x ˉ 2 T ] \xi = [\bar{x}_1^T, \bar{x}_2^T] ξ=[xˉ1T,xˉ2T] 满足 (51)–(52)。另一方面,目标轨迹 x 1 = v x_1 = v x1=v 、 x 2 T = [ ω T , z d T ] x_2^T = [\omega^T, z_d^T] x2T=[ωT,zdT] 分别对应于惯性系 (1)、车身系 (2) 中的旋转动力学和期望运动学 z d = 0 3 × 1 z_d = 0_{3 \times 1} zd=03×1 ,是虚拟系统的另一个特定解,它与 h h h 无关。因此, v ^ ( t ) − v ( t ) → 0 3 × 1 \hat{v}(t) - v(t) \to 0_{3 \times 1} v^(t)−v(t)→03×1 、 ω r ( t ) − ω ( t ) → 0 3 × 1 \omega_r(t) - \omega(t) \to 0_{3 \times 1} ωr(t)−ω(t)→03×1 和 z ( h ( t ) e ( t ) ) − z d ( h ( t ) e ( t ) ) = z ( h ( t ) e ( t ) ) → 0 3 × 1 z(h(t) e(t)) - z_d(h(t) e(t)) = z(h(t) e(t)) \to 0_{3 \times 1} z(h(t)e(t))−zd(h(t)e(t))=z(h(t)e(t))→03×1 。这意味着 ω ^ → ω \hat{\omega} \to \omega ω^→ω 、 ω → ω d \omega \to \omega_d ω→ωd 和 e → h 1 ^ e \to h \hat{1} e→h1^ 从任何初始条件 [ ω ^ T ( 0 ) , ω T ( 0 ) , e T ( 0 ) , h ( 0 ) ] T ∈ R 3 × R 3 × S 3 × H [\hat{\omega}^T(0), \omega^T(0), e^T(0), h(0)]^T \in \mathbb{R}^3 \times \mathbb{R}^3 \times S^3 \times H [ω^T(0),ωT(0),eT(0),h(0)]T∈R3×R3×S3×H 呈指数增长。
注释 7(切换控制器):离散状态 h h h 根据滞后函数 0 ≤ δ ≤ 1 0 \leq \delta \leq 1 0≤δ≤1 的半宽改变其值,以稳定给定初始条件 e ( 0 ) e(0) e(0) 的最近点,从而实现更节能的跟踪和对噪声姿态测量的鲁棒性增强 [36]。请注意,当 δ = 1 \delta = 1 δ=1 、 h ( t ) = 1 , ∀ t ≥ 0 h(t) = 1, \forall t \geq 0 h(t)=1,∀t≥0 时,切换控制器变为连续姿态反馈控制器,能量效率较低;另一方面,当 δ = 0 \delta = 0 δ=0 、 h ( t ) = sgn ^ ( e 0 ( t ) ) h(t) = \hat{\text{sgn}}(e_0(t)) h(t)=sgn^(e0(t)) 时,它对应于常见的不连续控制器,对任意小的测量噪声不具有鲁棒性 [36]。