YOLOV8改进:LSKA注意力机制改进SPPF模块

  • 1.SPPF介绍
  • SPPF是YOLOV8的空间金字塔池化层,用于在多个尺度上聚合特征。其简单的模块结构图如下:
  • 快速空间金字塔池化层(SPPF)。1024代表输出通道数,5代表池化核大小k。结合模块结构图和代码可以看出,最后concat得到的特征图尺寸是20*20*(512*4),经过一次Conv得到20*20*1024。在V8中的实现如下

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

 2.LSKA注意力机制介绍

LSKA将深度卷积层的二维卷积核分解为级联的水平和垂直一维卷积核。与标准的LKA设计相比,所提出的分解使得可以在注意力模块中直接使用具有大卷积核的深度卷积层,无需额外的块。

视觉注意力网络(VAN)具有大卷积核注意力(LKA)模块已经在一系列基于视觉的任务上表现出卓越的性能,超越了视觉Transformer。然而,这些LKA模块中的深度卷积层随着卷积核大小的增加而导致计算和内存占用呈二次增加。

为了缓解这些问题,并实现在VAN的注意力模块中使用极大的卷积核,作者提出了一系列Large Separable Kernel Attention模块,称为LSKA。LSKA将深度卷积层的二维卷积核分解为级联的水平和垂直一维卷积核。与标准的LKA设计相比,所提出的分解使得可以在注意力模块中直接使用具有大卷积核的深度卷积层,无需额外的块。作者证明了VAN中所提出的LSKA模块可以实现与标准LKA模块相当的性能,并且计算复杂性和内存占用更低。作者还发现,随着卷积核大小的增加,所提出的LSKA设计更倾向于将VAN偏向物体的形状而不是纹理。

LSKA的结构和作用可以分为以下几个步骤:

  1. 初始化卷积层(conv0h和conv0v):这两个卷积层分别负责提取输入特征图的水平和垂直方向的特征。这一步是为了生成初步的注意力图,帮助模型集中注意力于图像中的重要部分。

  2. 空间扩张卷积层(conv_spatial_h和conv_spatial_v):在获得初步的注意力图后,LSKA使用具有不同扩张率的空间扩张卷积来进一步提取特征。这些卷积层能够在不增加计算成本的情况下,覆盖更大的感受野,捕捉更广泛的上下文信息。通过分别沿水平和垂直方向进行操作,它们可以更细致地处理图像特征,并增强模型对于图像中空间关系的理解。

  3. 融合和应用注意力:在经过一系列的卷积操作后,LSKA通过最后一个卷积层(conv1)融合得到的特征,生成最终的注意力图。这个注意力图会与原始输入特征图(u)进行元素级别的乘法操作,即应用注意力机制。这样,原始特征图中的每个元素都会根据注意力图的值进行加权,突出重要的特征,抑制不重要的特征。

总的来说,LSKA注意力机制通过利用大且可分离的卷积核以及空间扩张卷积来捕捉图像的广泛上下文信息,生成注意力图,并通过这个注意力图加权原始特征,以此增强网络对于重要特征的关注度,提高模型的性能。

这是LSKA原论文的翻译链接:LSKA~_lska注意力机制-CSDN博客

3.基于YOLOV8的改进

根据我的改进,在SPPF(Spatial Pyramid Pooling - Fast)的结构中,LSKA(Large-Separable-Kernel-Attention)模块被添加在了所有最大池化层(MaxPool2d)操作完成后和第二个卷积层(Conv)之前。在代码的forward方法中,输入x首先通过一个卷积层cv1,然后连续通过三个最大池化层m。这些层的输出被连接(Concat)在一起,然后整个连接后的输出被送入LSKA模块。LSKA模块处理完毕后,输出被送入另一个卷积层cv2

LSKA注意力机制极大的提高了SPPF模块在多个尺度上聚合特征的能力。

大概就是这个意思,如果各位有意购买改进的源码,请移步YOLOV8改进:LSKA注意力机制改进SPPF模块

代码中我已经做好了完整的修改,只需要添加数据源和自己的路径,即可训练。即买即用,对于组会忙着拼凑组会汇报的进度,忙着寻找创新点的炼丹师们极为友好,本科生直接拿来做毕业设计也是极好的,一顿饭钱就解决了本科毕业的问题。

### 关于注意力机制的相关论文 在深度学习领域,注意力机制已经成为许多研究的核心主题之一。以下是一些与注意力机制相关的经典和前沿论文: #### 经典注意力机制论文 1. **Neural Machine Translation by Jointly Learning to Align and Translate** 这篇论文首次引入了序列到序列模型中的注意力机制概念[^3]。它通过计算源句中每个词的重要性来动态调整翻译过程中的权重分配。 2. **Attention Is All You Need** 此论文提出了 Transformer 架构,完全基于自注意力机制构建而成,摒弃了传统的循环神经网络结构[^4]。Transformer 已成为自然语言处理领域的标准架构之一。 #### 局部注意力改进方向 根据最新研究成果,《Efficient Local Attention for Deep Convolutional Neural Networks》提出了一种名为高效局部注意力(ELA)的方法[^2]。该方法针对 Coordinate Attention 的不足进行了优化,并结合一维卷积和 Group Normalization 技术增强了特征表达能力。 以下是实现 ELA 方法的一个简化代码示例: ```python import torch.nn as nn class EfficientLocalAttention(nn.Module): def __init__(self, channels, groups=8): super(EfficientLocalAttention, self).__init__() self.group_norm = nn.GroupNorm(groups, channels) self.conv1d = nn.Conv1d(channels, channels, kernel_size=3, padding=1) def forward(self, x): x = self.group_norm(x) x = self.conv1d(x.permute(0, 2, 1)).permute(0, 2, 1) return x ``` #### 可视化注意力机制的研究 另一项重要工作来自 Ba et al., 提出了 Layer-wise Relevance Propagation (LRP),用于解释深度神经网络中的决策路径并可视化注意力分布[^5]。 --- ### 注意力机制的应用范围扩展 除了上述理论基础外,注意力机制还被应用于多个具体场景,例如时间序列预测、推荐系统以及强化学习等领域。这些应用进一步推动了其发展和技术成熟度。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值