ECCV 2022 An Information Theoretic Approach for Attention-Driven Face Forgery Detection

文章提出了一种名为SIA的模块,基于信息论中的自信息分析,用于强化伪造图像特征表达。SIA模块包括自信息计算、双重视觉注意力和自信息聚合,能有效捕捉局部高频线索和细节,尤其适用于人脸伪造检测任务。实验表明,SIA在模型的浅层和中间层插入能提高性能,避免下采样造成的细节丢失。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

我们最近的观察表明,大多数伪造线索都隐藏在信息区,这可以通过经典的信息最大化理论进行定量测量。因此我们第一个尝试使用信息论的手段去强化伪造区域的特征表达。在此基础上我们提出了SIA模块。

二、方法

Self-Information Analysis

自信息⽤来衡量单⼀事件发⽣时所包含的信息量多寡。

我们认为伪造区域与它相邻的neighbour patch 的差异越大,其包含的信息量就越多。

论文的方法示意图如下。主要包含三个模块Self  Imformation Computation(计算输入特征图的high-Imformation 区域,输出一个attention map)、Self-Imformation based Dual Attention(同时使用通道注意力和空间注意力去最大化自信息的效果),Self-Imformation aggreation(将所有自信息的特征图送入SIA从而最大程度的保留细节区域

Self-Information Computation

我们将输入到第t层的SIA模块特征记作

将第k个通道的(i

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值