一、背景
我们最近的观察表明,大多数伪造线索都隐藏在信息区,这可以通过经典的信息最大化理论进行定量测量。因此我们第一个尝试使用信息论的手段去强化伪造区域的特征表达。在此基础上我们提出了SIA模块。
二、方法
Self-Information Analysis
自信息⽤来衡量单⼀事件发⽣时所包含的信息量多寡。
我们认为伪造区域与它相邻的neighbour patch 的差异越大,其包含的信息量就越多。
论文的方法示意图如下。主要包含三个模块Self Imformation Computation(计算输入特征图的high-Imformation 区域,输出一个attention map)、Self-Imformation based Dual Attention(同时使用通道注意力和空间注意力去最大化自信息的效果),Self-Imformation aggreation(将所有自信息的特征图送入SIA从而最大程度的保留细节区域)
Self-Information Computation
我们将输入到第t层的SIA模块特征记作
将第k个通道的(i