Xception:Deep Learning with Depthwise Separable Convolutions

Xception: Deep Learning with Depthwise Separable Convolutions

Xception:使用深度可分离卷积的深度学习

Xception:extreme inception,分解到极致的Inception;

发表时间:[Submitted on 7 Oct 2016 (v1), last revised 4 Apr 2017 (this version, v3)];

发表期刊/会议:Computer Vision and Pattern Recognition;

论文地址:https://arxiv.org/abs/1610.02357;

深度可分离卷积相关内容:
🔗https://blog.csdn.net/COINVK/article/details/128264121;

Inception发展演变:

  • GoogLeNet/Inception V1:2014年9月 《Going deeper with convolutions》;
  • BN-Inception 2015年2月 《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》;
  • Inception V2/V3 2015年12月《Rethinking the Inception Architecture for Computer Vision》;
  • Inception V4、Inception-ResNet 2016年2月 《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》;
  • Xception 2016年10月 《Xception: Deep Learning with Depthwise Separable Convolutions》;


0 摘要

Inception结构是介于传统卷积和深度可分离卷积(深度可分离卷积=depthwise深度卷积 + pointwise1×1逐点卷积)的一种中间形态;

深度可分离卷积相关内容:
🔗https://blog.csdn.net/COINVK/article/details/128264121;

受此启发,深度可分离卷积可以被看作有很多分支结构的Inception模块(就是说…如果Inception里的分支有很多的话(分解到极致),可以等同于深度可分离卷积);

基于此发现,本文本文提出一个新的Inception架构:Xception,将原Inception替换成深度可分离卷积;

实验证明,Xception在ImageNet分类数据集上性能优于Inception-V3;

由于Xception架构具有与InceptionV3相同数量的参数,因此性能的提高不是由于容量的增加,而是由于模型参数的更有效使用;


1 简介

2012——AlexNet;
https://blog.csdn.net/COINVK/article/details/128708430;

2013——ZFNet;
https://blog.csdn.net/COINVK/article/details/128713071;

2014——VGG;
https://blog.csdn.net/COINVK/article/details/128756488;

2014——GoogLeNet(Inception V1);
https://blog.csdn.net/COINVK/article/details/128995633;

2015——BN-Inception;
https://blog.csdn.net/COINVK/article/details/129033209;

2015——Inception V2/V3;
https://blog.csdn.net/COINVK/article/details/129061046;

2016——Inception-V4,Inception-ResNet;
https://blog.csdn.net/COINVK/article/details/129122247;

下图展示了一个经典的Inception模块:

图1:经典Inception模块

图2:简化的Inception模块

图3:与图2等价,将3个1×1卷积简化成一个共用的1×1卷积(分组卷积)

1.1 Inception 假设

Inception模块背后的想法是通过将其明确解耦,从而使该过程更加简单和高效;


1.2 常规卷积和可分离卷积之间的形态

在图3的基础上,分解到极致,如图4所示,这样处理的Inception(Xception)就变成了和深度可分离卷积等价的一个结构;

图4:Xception模块,将图3分解到极致,一个3×3卷积只处理一个通道

Xception和深度可分离卷积的区别:

  • 操作顺序不同
    • 深度可分离卷积先进行depwise深度卷积再进行pointwise逐点卷积;
    • Xception模块先进行pointwise逐点卷积,再进行depwise深度卷积;
  • 第一次操作后激活函数不同(实验结果见图10)
    • Xception使用非线性激活函数ReLu;
    • 深度可分离卷积不使用非线性激活函数;


3 Xception架构

本文提出Xception网络架构,主要基于深度可分离卷积(参考图4);

Xception架构如图5所示,一共有36层,主要研究多类别图像分类任务;

36个层被划分为14个模块,除了第一个和最后一个模块之外,所有模块周围都有线性残差连接;

图5:Xception架构

pytorch代码实现,Xception框架:

class Xception(nn.Module):
    def __init__(self, num_classes=1000):
        super(Xception, self).__init__()
        self.num_classes = num_classes  # 总分类数

        # Entry flow
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=2, padding=0, bias=False)
        self.bn1 = nn.BatchNorm2d(32)
        self.relu = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(64)

        
        self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True)
        self.block2 = Block(128, 256, 2, 2, start_with_relu=True, grow_first=True)
        self.block3 = Block(256, 728, 2, 2, start_with_relu=True, grow_first=True)

        # Middle flow
        self.block4 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block5 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block6 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block7 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)

        self.block8 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block9 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block10 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
        self.block11 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)

        # Exit flow
        self.block12 = Block(728, 1024, 2, 2, start_with_relu=True, grow_first=False)

        self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
        self.bn3 = nn.BatchNorm2d(1536)

        
        self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
        self.bn4 = nn.BatchNorm2d(2048)

        self.fc = nn.Linear(2048, num_classes)


    def forward(self, x):
        # Entry flow
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        x = self.block1(x)
        x = self.block2(x)
        x = self.block3(x)

        # Middle flow
        # 重复8次
        x = self.block4(x)
        x = self.block5(x)
        x = self.block6(x)
        x = self.block7(x)
        x = self.block8(x)
        x = self.block9(x)
        x = self.block10(x)
        x = self.block11(x)

        # Exit flow
        x = self.block12(x)

        x = self.conv3(x)
        x = self.bn3(x)
        x = self.relu(x)

        x = self.conv4(x)
        x = self.bn4(x)
        x = self.relu(x)

        # GAP
        x = F.adaptive_avg_pool2d(x, (1, 1))
        x = x.view(x.size(0), -1)
        x = self.fc(x)

        return x

pytorch实现深度可分离卷积:

# 深度可分离卷积 = dw + pw
class SeparableConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation=1, bias=False):
        super(SeparableConv2d, self).__init__()

        # 逐通道卷积:groups=in_channels=out_channels
        self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, padding, dilation, groups=in_channels,
                               bias=bias)
        # 逐点卷积:普通1x1卷积
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, groups=1,
                                   bias=bias)

    def forward(self, x):
        x = self.conv1(x)
        x = self.pointwise(x)
        return x

pytorch实现Xception中的残差块:

# Xception中的一个残差block
class Block(nn.Module):
    def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
        #:parm reps:块重复次数
        super(Block, self).__init__()


        # 通道数不相等的情况
        if out_filters != in_filters or strides != 1:
            self.skip = nn.Conv2d(in_filters, out_filters, kernel_size=1, stride=strides, bias=False)
            self.skipbn = nn.BatchNorm2d(out_filters)
        else:
            self.skip = None

        self.relu = nn.ReLU(inplace=True)
        rep = []

        filters = in_filters
        if grow_first:
            rep.append(self.relu)
            # 这里的卷积不改变特征图尺寸
            rep.append(SeparableConv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))
            filters = out_filters

        for i in range(reps - 1):
            rep.append(self.relu)
            # 这里的卷积不改变特征图尺寸
            rep.append(SeparableConv2d(filters, filters, kernel_size=3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(filters))

        if not grow_first:
            rep.append(self.relu)
            # 这里的卷积不改变特征图尺寸
            rep.append(SeparableConv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1, bias=False))
            rep.append(nn.BatchNorm2d(out_filters))

        if not start_with_relu:
            rep = rep[1:]
        else:
            rep[0] = nn.ReLU(inplace=False)


        if strides != 1:
            rep.append(nn.MaxPool2d(kernel_size=3, stride=strides, padding=1))
        self.rep = nn.Sequential(*rep)

    def forward(self, inp):
        x = self.rep(inp)

        if self.skip is not None:
            skip = self.skip(inp)
            skip = self.skipbn(skip)
        else:
            skip = inp

        # 残差连接
        x += skip
        return x


4 实验

Inception V3与Xception参数量相似(网络容量接近),将两个模型进行比较;

对两个图像分类任务进行了比较:

  • ImageNet数据集1000类单分类任务;
  • 大规模JFT数据集上的17000类多标签分类任务;


4.1 JFT数据集介绍

JFT是一个用于大规模图像分类数据集的Google内部数据集,含超过3.5亿张高分辨率图像,其中标注了17000个类别的标签。

为了评估在JFT上训练的模型的性能,使用辅助数据集FastEval14k。FastEval14k是一个包含14000张图像的数据集,其中包含来自约6000个类的密集注释(平均每张图像36.5个标签)。


4.2 优化配置

  • On Image Net:
    • Optimizer: SGD;
    • Momentmu:0.9;
    • Initial learning rate: 0.045;
    • Learning rate decay: decay of rate 0.94 every 2 epochs;
  • On JFT:
    • Optimizer: RMSprop ;
    • Momentum: 0.9;
    • Initial learning rate: 0.001;
    • Learning rate decay: decay of rate 0.9 every 3,000,000 samples;


4.3 正则化配置(防止过拟合)

  • Weight decay权重衰减;
    • l2正则化;
    • Inception-V3:weight decay rate: 4e-5(最优的,调参之后的);
    • Xception:1e-5(次优的,没有经过调参的);
  • Dropout;
    • 两个模型dropout rate 0.5;
    • 对于JFT实验,由于数据集的大小太大,在任何合理的时间内都不可能过度拟合,因此没有dropout。
  • Auxiliary loss tower辅助分类头;
    • 两个模型都没有用辅助分类器;


4.4 模型训练基础

TensorFlow;

60 NVIDIA K80 GPUs ;

ImageNet实验每次大约花费3天,而JFT实验每次花费一个多月(没有完全收敛 完全收敛需要三个月);


4.5 实验结果

4.5.1 分类性能

不同模型在ImageNet上,single crop的结果

表2:不同模型在JFT上,single crop的结果

不同模型在JFT上,single crop的结果

4.5.2 Size and speed

表3显示,两个模型参数量差不多,但Xception(28)比Inception-V3(31)训练慢一些;

表2:不同模型在JFT上,single crop的结果

4.6. 残差连接的作用

下图显示,加了残差连接的模型,收敛更快,精度更高;

图9:没有残差连接的模型精度低

4.7 激活函数的作用

在1×1卷积之后,depthwise卷积之前不同激活函数的效果;

红色:不用激活函数;
绿色:使用ELU激活函数;
蓝色:使用ReLU激活函数;

图10显示,没有任何非线性会导致更快的收敛和更好的最终性能;

图10:激活的作用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值