统计学补充概念03-核密度估计

概念

核密度估计(Kernel Density Estimation,简称 KDE)是一种非参数统计方法,用于估计随机变量的概率密度函数(Probability Density Function,PDF)。它通过在每个数据点周围放置核函数(通常是一个正态分布),然后将这些核函数叠加起来来估计概率密度函数。核密度估计常用于数据分布的可视化和平滑。

代码实现

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.neighbors import KernelDensity

# 生成一组模拟观测数据
np.random.seed(42)
data = np.random.normal(5, 2, 100)

# 创建一组测试点用于绘制估计的概率密度函数
x = np.linspace(min(data), max(data), 1000).reshape(-1, 1)

# 使用scikit-learn的KernelDensity进行核密度估计
kde = KernelDensity(kernel='gaussian', bandwidth=0.5).fit(data.reshape(-1, 1))
log_dens = kde.score_samples(x)

# 绘制原始数据和估计的概率密度函数
plt.hist(data, bins=20, density=True, alpha=0.5, color='blue', label='Histogram')
plt.plot(x, np.exp(log_dens), color='red', label='Kernel Density Estimation')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.title('Kernel Density Estimation')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值