统计学补充概念12-mds

本文介绍了多维缩放(MDS)作为一种经典降维技术,其目标是保持数据点间距离关系。文中详细讲解了度量MDS和非度量MDS的区别,并提供了使用sklearn库在Python中实现MDS并可视化鸢尾花数据集的例子。
摘要由CSDN通过智能技术生成

概念

多维缩放(Multi-Dimensional Scaling,MDS)是一种经典的降维技术,用于将高维数据降维到低维空间中,同时尽量保留数据点之间的距离关系。与t-SNE类似,MDS也可以用于可视化高维数据在低维空间中的分布,但它更倾向于保留全局的距离关系。

MDS的核心思想是,尽可能在降维后的低维空间中重构原始数据点之间的距离或相似度。这可以通过找到一个在低维空间中的表示,使得在原始高维空间中的距离与在低维空间中的距离尽可能一致。

种类

度量MDS:度量MDS试图保留数据点之间的欧氏距离或其他度量距离。它通过在低维空间中优化数据点之间的距离来实现。

非度量MDS:非度量MDS不要求精确地重建原始数据点之间的距离,而是在低维空间中找到一个表示,使得在低维空间中的排序或秩次与原始数据点之间的排序关系相似。

代码实现

import numpy as np
from sklearn.manifold import MDS
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt

# 加载鸢尾花数据集
data = load_iris()
X = data.data

# 创建MDS模型并降维
mds = MDS(n_components=2, random_state=42)
X_mds = mds.fit_transform(X)

# 可视化降维结果
plt.scatter(X_mds[:, 0], X_mds[:, 1])
plt.xlabel('MDS Dimension 1')
plt.ylabel('MDS Dimension 2')
plt.title('MDS Visualization')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丰。。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值