详解numpy中transpose()函数

本文详细解读了numpy transpose函数的工作原理,通过实例演示如何在二维和三维数组中调整索引,从基本的行列对换到高维数组的索引调整。掌握如何利用transpose进行维度变换,适用于计算机视觉与图形学的学习者。
摘要由CSDN通过智能技术生成

今天在网上搜寻了许多博客,始终没有真正理解numpy中的transpose()函数,

transpose 的原理其实是根据维度(shape)索引决定的,举个栗子:

x = np.arange(4).reshape((2,2)) //生成一个2x2的数组
print(x)
[[0 1]   
[2 3]]

我们生成了一个维度为二维的数组,其中有两个索引值(矩阵的行与列)。

transpose()函数的作用就是调换数组的行列值的索引值,类似于求矩阵的转置:

x = np.arange(4).reshape((2,2))
x = np.transpose(x) 
print(x)
[[0 2]
 [1 3]]

我们可以直观的看到,数组的行列索引值对换,1的位置从x(0,1)跑到了x(1,0)。

那么三维数组呢?

我们继续生成一个三维的数组:

x = np.arange(12).reshape((2,2,3))  //生成一个2x2x3的数组
print(x)
[[[ 0  1  2]
  [ 3  4  5]]
 [[ 6  7  8]
  [ 9 10 11]]]

我们从高中数学知道三维由x轴、y轴以及z轴组成。

假设三维数组当中的索引值为x,y,z

transpose()函数的作用就是调换x,y,z的位置,也就是数组的索引值。

所以我们正常的数组索引值为(0,1,2),等于(x,y,z)

我们来看实例代码:

x = np.arange(12).reshape((2,2,3))
print(x)
[[[ 0  1  2]
  [ 3  4  5]]
 [[ 6  7  8]
  [ 9 10 11]]]
 
x = np.transpose(x,(1,0,2))  //transpose()函数的第二个参数就是改变索引值的地方
print(x)
[[[ 0  1  2]
  [ 6  7  8]]
 [[ 3  4  5]
  [ 9 10 11]]]

通过transpose()函数改变了x的索引值为(1,0,2),对应(y,x,z)

索引改变后原本y的值和x的值对换了。

有上面代码的数字7为例,原本的7的位置索引为(1,0,1),通过transpose(x,(1,0,2))索引改变为(0,1,1)

无论四维、五维……都可以用这个原理分析。

了解更多关于《计算机视觉与图形学》相关知识,请关注公众号:
在这里插入图片描述
下载我们视频中代码和相关讲义,请在公众号回复:计算机视觉课程资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值