面试+学习+做项目 OpenVINO最全视频讲解

周末时光-我的有趣灵魂 专栏收录该内容
36 篇文章 1 订阅

基于 Python 的 OpenVINO 开发实战教程
树莓派 4B+OpenVINO 快速实现人脸识别
OpenVINO™_使用指南

在这里插入图片描述
更多资料请关注:计算机视觉与图形学实战

基于 Python 的 OpenVINO 开发实战教程

目录(B站播放量第一)
P1 01-02 OpenVINO™ Toolkit 框架介绍、安装与演示 29:58
P3 04 基本的图像读写操作 09:43
P5 06 简单的图像操作 16:07
P7 08 OpenVINO SDK介绍与开发流程 09:09
P9 10 SSD对象检测 23:54
P11 12 同步与异步调用 11:21
P13 14 表情识别 17:19
P15 16 人脸关键点提取 18:05
P17 18 行人检测 10:10
P19 20 行人属性检测 26:23
P21 22 场景文字检测 20:48

树莓派 4B+OpenVINO 快速实现人脸识别

OpenVINO™_使用指南

目录(英特尔物联网创新大使投稿)
P1 OpenVINO™_02_OpenVINO™安装流程 03:56
P2 OpenVINO™_03_工作流程与原理 02:56
P3 OpenVINO™_04_示例操作教程 03:49
P4 OpenVINO™_05_编译示例代码 05:41
P5 OpenVINO™_06_使用Model Downloader下载深度学习模型 02:29
P6 OpenVINO™_07_深度学习:分类、检测、分割 04:39
P7 OpenVINO™_08_Model Optimization 的原理 03:57
P8 OpenVINO™_09_Model Optimizer 上手操作 02:57
P9 OpenVINO™_10_Model Optimizer 选择合适的数据类型 04:18
P10 OpenVINO™_11.2_Model Optimizer - 高级应用第二部分 04:11
P11 OpenVINO™_11_Model Optimizer 高级应用 03:49
P12 OpenVINO™_12_Model Optimizer - TensorFlow 05:05
P13 OpenVINO™_13_使用Model Optimizer 转换 ONNX 模型 02:22
P14 OpenVINO™_15_Inference Engine 原理 03:43
P15 OpenVINO™_16_使用Inference Engine 示例代码 04:05
P16 OpenVINO™_17_Inference Engine 的Python示例代码 04:15
P17 OpenVINO™_18_Intel 集成显卡 05:22
P18 OpenVINO™_20_使用OpenVINO的预训练模型 04:03
P19 OpenVINO™_21_交互式人脸检测演示 03:20
P20 OpenVINO™_22_多路人脸检测演示 06:51
P21 OpenVINO™_23_Pedestrian Tracker Demo 04:31
P22 OpenVINO™_27_Movidius MyriadX 03:08
P23 OpenVINO™_28_使用英特尔Movidius神经计算棒进行推理 04:03
P24 OpenVINO™_29_异构插件 04:24
P25 OpenVINO™_30_Inference Engine 的异步操作API 02:47
P26 OpenVINO™_32_Use the Benchmark Utility 06:56
P27 OpenVINO™_33_Validation application 05:23
P28 OpenVINO™_35_HDDL Intel Vision Accelerator
Part 1 05:30
P29 OpenVINO™_36_HDDL Intel Vision Accelerator
Part 2 04:47
P30 OpenVINO™_37_RaspberryPI + Movidius NCS 04:41
P31 OpenVINO™_39_Smart Classroom Demo 03:50
P32 OpenVINO™_40_INT8 and VNNI 08:31
P33 OpenVINO™_41_INT8 Full Inference Flow Example 06:38
P34 OpenVINO™_45_GPU
Performance Monitoring 04:21
P35 OpenVINO™_47_Full
Pipeline Simulation Using GStreamer 06:03
P36 OpenVINO™_48_Full
Pipeline Simulation Using GStreamer Samples 04:32
P37 OpenVINO™_50_Inference in Five Lines of Code 03:07
P38 OpenVINO™_51_CVAT Computer Vision Annotation Tool 06:04
P39 OpenVINO™_52_CVAT Auto Annotation 05:02
P40 OpenVINO™_53_MULTI
Plug-in 05:24
P41 OpenVINO™_54_Video Compression 07:32
P42 OpenVINO™_55_Accelerate Video Decode with Intel Integrated GPU 08:11
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> <span></span> </p> <p> 手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。<br /> 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程中出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。<br /><br /> 基本提纲:<br /> 1、课程综述、环境配置<br /> 2、OpenVINO范例-超分辨率(super_resolution_demo)<br /> 3、OpenVINO范例-道路分割(segmentation_demo)<br /> 4、OpenVINO范例-汽车识别(security_barrier_camera_demo)<br /> 5、OpenVINO范例-人脸识别(interactive_face_detection_demo)<br /> 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo)<br /> 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo)<br /> 8、NCS和GOMFCTEMPLATE<br /> 9、课程小结,资源分享 </p>
<p><span style="color: #333333; font-family: 'Hiragino Sans GB', 'Microsoft Yahei', arial, 宋体, 'Helvetica Neue', Helvetica, STHeiTi, sans-serif; font-size: 16px; background-color: #ffffff;">详细介绍了OpenVINO整体架构、基本组件、核心组件DLDT与IE的使用,OpenVINO对模型加速执行推断的开发流程与步骤、相关SDK API函数如何在C++与Python环境下进行API调用,如何使用预训练模型快速开发图像分类、对象检测、语义分割、实例分割、车牌识别、行人检测、场景文字检测与识别、YOLOv5模型部署加速与推理、表情识别与landmark提取等高实时视频分析程序,使用模型优化器进行模型压缩转换与优化等OpenVINO核心技术演示与代码教学。一步一步教你构建CPU级别可实时的深度学习模型应用程序。部分演示程序截图如下(</span><strong style="color: #333333; font-family: 'Hiragino Sans GB', 'Microsoft Yahei', arial, 宋体, 'Helvetica Neue', Helvetica, STHeiTi, sans-serif; font-size: 16px; background-color: #ffffff;">均基于CPU达到实时帧率,基于OpenVINO2021.02版本录制</strong><span style="color: #333333; font-family: 'Hiragino Sans GB', 'Microsoft Yahei', arial, 宋体, 'Helvetica Neue', Helvetica, STHeiTi, sans-serif; font-size: 16px; background-color: #ffffff;">):</span></p> <p><span style="color: #424242; background-color: #ffffff;"><img src="https://img-bss.csdn.net/201911090640507040.png" alt="" /><br /></span></p>
©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值