作者 | 汽车人 编辑 | 汽车人
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【全栈算法】技术交流群
后台回复【ECCV2022】获取ECCV2022所有自动驾驶方向论文!
摘要
比较神经网络模型的功能行为,无论是一个单一的网络还是两个(或更多的网络)在训练期间或训练后,是理解他们正在学习(和他们没有)的重要步骤,并确定正规化或效率提高的策略。尽管最近取得了一些进展,例如将视觉transformers与 CNN 进行比较,但是系统的功能比较,尤其是跨不同网络的功能比较,仍然很困难,而且往往是一层一层地进行。诸如典型相关分析(CCA)等方法在原则上是适用的,但迄今为止只有少量使用。在本文中,我们重新审视一个(不太广为人知)的统计,称为距离相关(及其偏变量) ,旨在评估不同维度的特征空间之间的相关性。论文描述了实现大规模模型部署的必要步骤——这为一系列令人惊讶的应用打开了大门,这些应用包括调节一个深度模型。另一个深度模型,学习分离表示,以及优化多样化模型,这些模型将直接对抗更强大的攻击。论文的实验提出了一种具有许多优点的通用正则化器(或约束) ,它避免了人们在这种分析中面临的一些常见困难。
论文链接:https://arxiv.org/pdf/2207.09684v2.pdf
代码链接:https://github.com/zhenxingjian/Partial_Distance_Correlation
本文的起点是一个不太广泛使用的统计概念,用于测量不同维度的两个不同特征空间(X,Y)之间的相关性,称为距离相关性(和相异性方法)。在浅层环境中,CCA和距离相关性提供了非常相似的功能—在大多数情况下,它们可以互换使用,尽管距离相关性也需要指定距离(或差异)。换句话说,CCA可能更容易部署。另一方面,CCA的深度变体涉及专门的算法[4,47]。此外,部分CCA的深度版本尚未报道。相反,只要可以计算特征距离,距离相关性的浅版本和深版本之间的差异充其量是最小的,所需的调整也很小。这些优点延续到部分距离相关,直接使一个模型与另一个模型相适应(或使用这样的术语作为正则化器)。本文的主要贡献是研究距离相关性(和部分距离相关性),将其作为视觉中一系列任务的有力度量。论文回顾了使其能够在深度学习环境中实例化的相关技术步骤,并展示了其广泛的应用,从学习不纠缠的表示到理解两个(或多个)网络正在学习的内容之间的差异,再到训练“互不相同”的深度模型(类似于早期关于图形模型中MAP估计的M个最佳解决方案的工作[19,70])或者训练M个不同的模型用于前景背景分割以及其他任务[27]。
【自动驾驶之心】全栈技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、规划控制、模型部署落地、自动驾驶仿真测试、硬件配置、AI求职交流等方向;
加入我们:自动驾驶之心技术交流群汇总!
自动驾驶之心【知识星球】
想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球(三天内无条件退款),日常分享论文+代码,这里汇聚行业和学术界大佬,前沿技术方向尽在掌握中,期待交流!