首篇代客泊车中的环视鱼眼BEV感知

作者 | 自动驾驶专栏  编辑 | 自动驾驶专栏

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【全栈算法】技术交流群

a2f4129742bbd30fe0b4bdf4cb11c86e.png

  • 论文链接:https://arxiv.org/pdf/2212.04111.pdf

52c8d8d3465eaa9a9220fa26e8db8e35.jpeg

摘要

8e4f079ef68c21a4fc9609f9a3a09d51.png

本文介绍了代客泊车中环视鱼眼BEV感知。代客泊车场景下的环视鱼眼感知是自动驾驶的基础和关键。停车场的环境条件与常见的公开数据集表现不同,例如停车场中光照不好且不透明度高,这对感知性能产生严重影响。大多数基于公开数据集的现有网络可能会在这些代客泊车场景下产生次优的结果,它还会受到鱼眼相机畸变的影响。在本文中,我们引入一个新的大尺度鱼眼数据集,称为Fisheye Parking Dataset(FPD),以促进对处理不同现实世界中环视泊车案例的研究。值得注意的是,我们编译的FPD对于不同的环视感知任务表现出优异的特性。此外,本文还提出一种实时的畸变不敏感的多任务框架——鱼眼感知网络Fisheye Perception Network(FPNet),该框架通过增强鱼眼畸变操作和多任务轻量化设计来改善环视鱼眼BEV感知。大量实验验证了本文方法的有效性以及数据集杰出的泛化能力。

9fa0376b3eff1bf3740b50a9ac2d0759.jpeg

主要贡献

a82d44c4a29fd17554c3ddc044ef4cc7.png

1)本文建立首个鱼眼泊车数据集FPD,重点研究环视鱼眼感知,包括2D目标检测、3D目标检测、BEV感知和深度估计。我们贡献的FPD包括超过40万张鱼眼图像,并且包含泊车场景中独特的特性;

2)本文对于FPD提出基准:针对环视感知任务(特别是BEV感知)的畸变不敏感多任务框架FPNet。FPNet利用特定的畸变模块和轻量化设计来实现实时、畸变不敏感和精确的性能;

3)综合实验验证所采集FPD数据集的实用性和FPNet的有效性。

04ba1a2d7093b7d305ba8636044d57fb.jpeg

论文图片和表格

c4c739a176eaea8534d830a82913ab70.png

0b8776fe73eca3f0979132c43a69affc.png

b62bac15cfcc4b37eea9c83ba4e3fd89.png

b49a6f1e0be8bf76e8bfe2e24cc3c40b.png

335ca509b167759209e17485b76c866b.png

418b95a3d2eb1a56b1a071ce28f93bc8.png

1904cb13e842ec70fa6689dfc8bb958e.png

f7ef4b410350d1041fe5964712ecdfb7.png

5b6c08172535d09ce04bbb3ff633e4ba.png

cf4f7f1ceaf14415516d43b658c9886f.png

52cfe1345e10bdc3ac17ae1a139344f3.png

75036f27f7c863dc6cee0f0bda7e0f72.png

13018c45c004ebd2ba31ebe218a585e2.png

4ee7d99397b90248ec3cb24c45135c67.png

73287878fb71bf6c6283127a68c549a1.png

2cd1c3fe38624b0c38d52a3f70cfd6b9.png

f6f58fda2fd9fa48b97d356e34abcea5.png

fed5a6518cd1c5ade800bee960eca520.png

4184bc5b2f48bb886bd1e224356ca79d.png

2cf94eb1df9a6a35d515bd534ce3c30c.png

2763a6f7dd05e415dd31ee9539913403.png

c20ea159ee84566acd9b58902d7c1817.jpeg

总结

80e83d453e43f6a4626595dc5e5537f4.png

本文提出一种新的大尺度鱼眼数据集,即Fisheye Parking Dataset(FPD)。通过提供多样化的环视泊车场景,所提出的数据集旨在帮助业界针对停车场构建一个更安全的高级驾驶辅助系统。此外,本文提供实时的多任务鱼眼感知网络Fisheye  Perception Network(FPNet),用于增强鱼眼畸变性能和各种轻量化设计。FPD上的大量实验验证了本文FPNet的有效性。然而,FPD有很多的发展空间,包括如何强化更多数据多样性、简化本文方法、处理可持续增长数据和多样化视觉任务的潜力。尽管如此,我们希望FPD能够激励更多的相关研究,并且提高泊车场景下环视感知的性能。

在未来,将在以下几个方面进一步探索代客泊车的环视鱼眼BEV感知:

1)探索激光雷达-相机融合感知,因为激光雷达点云提供更多的三维信息;

2)探索轻量化图像特征提取器以获取更鲁棒的视觉特征;

3)设计特定的技术来处理具有畸变的鱼眼图像,以增强泛化能力;

4)将环视鱼眼BEV感知和数据集应用于其它任务,例如障碍物检测。

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)

660527c7004dd7e006979d91e284843b.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

84d0ea2a8c9ad097f538cc4966ffe7c3.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

d422a5cd677ac9864b4a2e665b37240d.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

### BEV感知在自动驾驶中的应用 #### 技术原理 BEV(鸟瞰图视角)感知算法通过将不同传感器获取的数据转换到统一的鸟瞰视图坐标系下,从而实现多源数据的有效融合[^1]。这种变换不仅限于摄像头图像,还包括激光雷达点云和其他类型的传感输入。通过对这些异构数据进行空间上的对齐和语义级别的聚合,可以构建出更加全面且精确的道路环境表示。 对于基于视觉的方法而言,通常会采用逆透视投影(Inverse Perspective Mapping, IPM)[^3]来完成二维图像向三维世界的映射;而对于LiDAR等主动式探测设备,则可以直接利用其自带的空间位置信息来进行处理。值得注意的是,虽然IPM技术已经相对成熟并被广泛应用,但它存在一些固有的缺陷——例如对外部参数敏感以及无法很好地处理非水平面物体等问题。因此,在实际部署过程中往往还需要结合其他手段加以补充和完善。 #### 实现方法 为了克服传统单目或双目相机方案中存在的诸多挑战,现代BEV感知框架倾向于集成多种不同类型的感受器,并借助深度学习模型挖掘其中蕴含的价值。具体来说: - **多模态特征提取**:针对每种特定类型的输入信号设计专门的编码网络结构,如ResNet用于RGB影像分析、PointNet负责点云分类任务等等; - **跨域一致性约束**:引入额外损失项鼓励来自不同渠道却指向同一物理实体的信息之间保持一致关系,进而增强系统的鲁棒性和泛化能力; - **时空联合建模**:考虑到交通场景具有很强的时间连续特性,故而有必要考虑如何有效地捕捉动态变化趋势。此时可选用循环神经元(RNNs),卷积长短记忆单元(C-LSTM)或者Transformer架构作为核心组件之一。 ```python import torch.nn as nn class MultiSensorFusion(nn.Module): def __init__(self): super(MultiSensorFusion, self).__init__() # Define feature extraction networks for different sensor types here def forward(self, inputs): fused_features = None # Implement fusion logic based on the extracted features from various sensors return fused_features ``` 上述代码片段展示了一个简单的多传感器融合模块定义方式,可以根据实际情况调整内部的具体组成部件及其连接模式以适应不同的应用场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值