作者 | 自动驾驶专栏 编辑 | 自动驾驶专栏
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【全栈算法】技术交流群
论文链接:https://arxiv.org/pdf/2212.04111.pdf
摘要

本文介绍了代客泊车中环视鱼眼BEV感知。代客泊车场景下的环视鱼眼感知是自动驾驶的基础和关键。停车场的环境条件与常见的公开数据集表现不同,例如停车场中光照不好且不透明度高,这对感知性能产生严重影响。大多数基于公开数据集的现有网络可能会在这些代客泊车场景下产生次优的结果,它还会受到鱼眼相机畸变的影响。在本文中,我们引入一个新的大尺度鱼眼数据集,称为Fisheye Parking Dataset(FPD),以促进对处理不同现实世界中环视泊车案例的研究。值得注意的是,我们编译的FPD对于不同的环视感知任务表现出优异的特性。此外,本文还提出一种实时的畸变不敏感的多任务框架——鱼眼感知网络Fisheye Perception Network(FPNet),该框架通过增强鱼眼畸变操作和多任务轻量化设计来改善环视鱼眼BEV感知。大量实验验证了本文方法的有效性以及数据集杰出的泛化能力。
主要贡献

1)本文建立首个鱼眼泊车数据集FPD,重点研究环视鱼眼感知,包括2D目标检测、3D目标检测、BEV感知和深度估计。我们贡献的FPD包括超过40万张鱼眼图像,并且包含泊车场景中独特的特性;
2)本文对于FPD提出基准:针对环视感知任务(特别是BEV感知)的畸变不敏感多任务框架FPNet。FPNet利用特定的畸变模块和轻量化设计来实现实时、畸变不敏感和精确的性能;
3)综合实验验证所采集FPD数据集的实用性和FPNet的有效性。
论文图片和表格

总结

本文提出一种新的大尺度鱼眼数据集,即Fisheye Parking Dataset(FPD)。通过提供多样化的环视泊车场景,所提出的数据集旨在帮助业界针对停车场构建一个更安全的高级驾驶辅助系统。此外,本文提供实时的多任务鱼眼感知网络Fisheye Perception Network(FPNet),用于增强鱼眼畸变性能和各种轻量化设计。FPD上的大量实验验证了本文FPNet的有效性。然而,FPD有很多的发展空间,包括如何强化更多数据多样性、简化本文方法、处理可持续增长数据和多样化视觉任务的潜力。尽管如此,我们希望FPD能够激励更多的相关研究,并且提高泊车场景下环视感知的性能。
在未来,将在以下几个方面进一步探索代客泊车的环视鱼眼BEV感知:
1)探索激光雷达-相机融合感知,因为激光雷达点云提供更多的三维信息;
2)探索轻量化图像特征提取器以获取更鲁棒的视觉特征;
3)设计特定的技术来处理具有畸变的鱼眼图像,以增强泛化能力;
4)将环视鱼眼BEV感知和数据集应用于其它任务,例如障碍物检测。
视频课程来了!
自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)
(扫码学习最新视频)
国内首个自动驾驶学习社区
近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
【自动驾驶之心】全栈技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;
添加汽车人助理微信邀请入群
备注:学校/公司+方向+昵称