首篇 | OpenOccupancy:环视占用感知的大规模基准!(中科院&鉴智)

作者 | ZZZzz  编辑 | 汽车人

原文链接:https://zhuanlan.zhihu.com/p/624365719

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【占用网络】技术交流群

后台回复【OccupancyNetwork】获取Occupancy Network相关论文干货资料!

Title: OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception

github: https://github.com/JeffWang987/OpenOccupancy

发表单位: 中国科学院自动化研究所、鉴智机器人、中国科学院大学、清华大学

Abstract

为了对周围感知算法进行全面的基准测试,我们提出了OpenOccupancy,它是第一个周视语义占用感知基准。

在OpenOccupancy基准中,我们用密集的语义占有率注释扩展了大规模的 nuScenes数据集。

以前的注释依赖于LiDAR点的叠加位置,由于LiDAR通道稀疏,一些占用标签被遗漏。为了缓解这个问题,我们引入了 (Augmenting And Purifying)(AAP)管道,对标签扩充到原来的两倍,其中有4000+小时的人工标注。

此外, 我们为OpenOccupancy基准建立了基于摄像头的、基于LiDAR和多模态的基线。

此外,考虑到周围占有率感知的复杂性在于高分辨率三维预测的计算负担,我们提出了Cascade Occupancy Network(CONet)来完善粗略的预测,相对来说,它比基线提高了30%的性能。

1. Introduction

SemanticKITTI[1]将占用感知扩展到驾驶场景,但其数据集的规模相对较小,而且多样性有限,这阻碍了占用感知算法的推广和评估。此外, SemanticKITTI只评估了前视的占用率预测,而周视感知对安全驾驶更为关键。为了解决这些问题,我们提出了OpenOccupancy,它是第一个周视语义占用感知基准 。

在OpenOccupancy基准中,我们引入了nuScenes-Occupancy,它扩展了大规模 nuScenes 数据集,具有密集的语义占用注释。

d34e5e7b5d8d39220e39724fccf3ded6.png

如表1所示,nuScenes-Occupancy的注释场景和帧的数量分别比 SemanticKITTI 多40倍和20倍。

具体来说,我们通过多帧LiDAR点的叠加来初始化注释,其中每个点的语义标签来自 Panoptic nuscenes 。考虑到初始注释的稀疏性(即由于遮挡或有限的LiDAR通道,一些占用标签被遗漏), 我们用伪占用标签来增加它,这些标签是由预先训练的基线构建的(见第3.4节)。为了进一步减少 noise 和 artifacts ,我们用人工来净化增加的注释。基于 AAP管道,我们生成了比初始注释密集2倍的占用标签。

3894c499aba088ef6f43143e74c0eb16.png

为了促进未来的研究,我们为 OpenOccupancy 基准建立了基于摄像头、基于LiDAR和多模式的基线。

实验结果表明,基于摄像头的方法在小物体(如自行车 、行人、摩托车)上取得了更好的性能,而基于激光雷达的方法在大的结构化区域(如可驾驶的路面、人 行道)上显示出更高的性能。值得注意的是,多模态基线自适应地融合了两种模态的混合特征,相对地将 整体性能(基于摄像头和基于激光雷达的方法)提高 了47%和29%。

考虑到周围占有率感知的计算负担, 提议的基线只能产生低分辨率的预测。为了实现高效的占用率感知,我们提出了 Cascade Occupancy Network (CONet)。在提出的基线上建立了一个从粗到细 (coarse-to-fine) 的管道,相对来说,性能提高了∼30%。

主要贡献如下:

  1. OpenOccupancy:第一个为驾驶场景中的周视占用率感知而设计的基准。

  2. The AAP pipeline:对nuScenes数据集的语义占用标签进行了注释和密集化,所得到的nuScenes-Occupancy是第一个用于周视语义占用的数据集。

  3. 在 OpenOccupancy 基准中建立了 camera-based, LiDAR-based and multi-modal 的基线。

  4. 基于OpenOccupancy基准,我们对所提出的基线、CONet和现代占用感知方法进行了综合实验

2. Related Work

MonoScene[5]是文献中第一个基于摄像头的占用感知方法,它可以从单一图像中推导出占用语义 。尽管占有率感知方法有了很大的发展,但它们大多集中在前视的室内场景。

最近,TPVFormer[19]提出了一个三视角的视图再现,以产生周视的占用预测,然而它的占用输出是相对稀疏的,因为TPVFormer是为 LiDAR分割设计的.

3. The OpenOccupancy Benchmark

3.1 Surrounding Semantic Occupancy Perception

参照[39],周视语义占有率感知是一项生成完整的 三维空间占有率代表和场景语义标签的任务。与专注 于前视感知的单眼范式[39]不同,周视占用感知算法的目标是在周视场景中产生语义占用。

值得注意的是,周视输入的感知范围比前视 传感器的感知范围大5倍。因此,周视占用感知的核心挑战在于有效地构建高分辨率的占用。

3.2. nuScenes-Occupancy

通过人工直接注释大规模的占用标签几乎是不现实的。因此,我们引入了 Augmenting And Purifying(AAP)管道, 以有效地注释和强化占用标签。

191cc56d891c41ef169abe5429fa37b3.png

我们首先通过LiDAR点的叠加将标签初始化

e98ba6b8161dc21ef48a135c6d3ab99f.png

其中静态点(例如,人行道)被转换为统一的世界坐标。

对于可移动的物体(例如,移动的汽车) 我们将点云转换为其边界框 B 的坐标(不同帧中的每个物体可以通过实例标记[32]进行关联)

随后,静态和动态的点被连接起来并被体素化, 产生初始占有率。

由于遮挡或稀疏的 LiDAR通道,一些占用标签被遗漏。受 self-training 的启发,我们用伪占位标签补充初始注释。

具体来说,初始标签被用来训练候选的多模态基线 (见第 3.4节),而伪占位标签 则被预训练模型生成。

1f38888e90582a7686b24498d22713b6.png 33f44dd69c90263de93ba426955e47ce.png

其中红色和蓝色圆圈高亮的区域表示增强的注释更加密集和准确。如图所示,伪标签是对初始注释的补充,而增强和净化后的标签则更加密集和精确。

3.3. Evaluation Protocol

评估范围:X、Y轴为[-51.2m, 51.2m],Z轴为[3m, 5m],体素的分辨率为0.2m,40×512×512。

评价准则:IoU 和 mIoU

3.4. OpenOccupancy Baselines

0e20cfc1c8984a56f88a93ce9f97b021.png

LiDAR-based baseline

1519f1b49e2a258172f3831467a0b6bb.png c6ba0d3194965678f7a1f5e7b23875f0.png

Camera-based baseline

f1dc11ff05ae40d70d26897bc4583841.png

Multi-modal baseline

在多模态基线中,我们提出了自适应融合模块,动态地整合来自LiDAR 的体素特征 和相机的体素特征 。

44b14b0fb8d9805362d22e707d17ad5f.png

4. Cascade Occupancy Network

与前视占用感知[1]相比,周视占用感知的输入覆盖了5倍的感知范围。因此,复杂性在于高分辨率三维预测的计算负担上。

具体来说,CONet 引入了一个 coarse-to-fine 的 pipeline,以多模态基线为例(称为多模态CONet),整体框架如图所示。

e8e919c77656c006f8584ea59db93452.png 5cd160f1c55bd942987e96c3ba946d88.png a2578f494bf63c1bf1f62819b5e9c8f2.png 7c148ff926dff40faca3bb4a9e2ad1ec.png 044ab4e5f8ddea226039fc08f859330e.png

并将转换到体素空间,对几何特征(geometric features)进行采样,

7e3b3d45f9feff941acd7c4354cf196b.png 0974079d80a25749aa724204a3b3961c.png

然后将采样的特征进行融合,并通过FC进行正则化产生细粒度的占有率预测(fine-grained occupancy predictions)

ba1de3b536ffdc2e131f8136a7118466.png 14ac55cb1fc9f469602d81abd60bed07.png

其中,Tv→q 将体素坐标转换为高分辨率查询(high-resolution query)的索引。

5. OpenOccupancy Experiment

包括三部分:

  1. camera-based methods

  2. LiDAR-based methods

  3. multimodal methods

9783d146f108630109061463c30d5a1a.png

(1) 与单视角方法相比,周视占用感知范式显示出卓越的性能。

(2) 所提出的基线显示了对周围占有率感知的适应性 和可扩展性。对于基于摄像头的方法,我们的基线在 IoU和mIoU上相对提高了TPVFormer的26%和32%。

(3) 来自照相机和LiDAR的信息是相互补充的,多模式基线大大增强了性能。

(4) 周视占有率感知的复杂性在于高分辨率三维预测的计算负担,这一点可以通过拟议的CONet来缓解。我们还提供了可视化(见图5),以验证CONet可以在粗略预测的基础上产生细粒度的占用结果。

b24142240dd54cc19587466154cbec2a.png
  1. 总结 在本文中,我们提出了OpenOccupancy,这是在驾驶场景中周视语义占用率的第一个基准。

具体来说, 我们介绍了nuScenes-Occupancy,它基于AAP pipeline,用密集的语义占用注释扩展了nuScenes数据集。在OpenOccupancy基准中,我们建立了基于摄像头、 基于激光雷达和多模态的基线。此外,我们还提出了 CONet 来减轻高分辨率占用率预测的计算负担。在OpenOccupancy基准上进行了全面的实验,结果表明 ,基于相机的基线和基于激光雷达的基线是相互补充的,而多模态基线则进一步提高了47%和29%的性能 。此外,提出的CONet最小的延迟开销相对提高了~ 30%的基线。我们希望OpenOccupancy基准将有利于周视语义占用感知的发展。

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)

a1a571b905d70460a72bfa75af688050.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

0bf818c8053cfc922b7986121df6163c.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

8928c246daac33dd1618e2bbd631c9cf.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值