作者 | eyesighting 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/626069490?
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【多传感器融合】技术交流群
后台回复【多传感器融合综述】获取图像/激光雷达/毫米波雷达融合综述等干货资料!
Cam&Lidar&Radar融合论文
CLR-BNN
题目:Camera, LiDAR, and Radar Sensor Fusion Based on Bayesian Neural Network (CLR-BNN)
名称:基于贝叶斯神经网络的相机、激光雷达和雷达传感器融合
论文:https://ieeexplore.ieee.org/document/9721916
FUTR3D
题目:FUTR3D: A Unified Sensor Fusion Framework for 3D Detection
名称:FUTR3D:用于 3D 检测的统一传感器融合框架
论文:https://arxiv.org/abs/2203.10642
代码:https://github.com/Tsinghua-MARS-Lab/futr3d
项目:https://tsinghua-mars-lab.github.io/futr3d/
HydraFusion
题目:HydraFusion: Context-Aware Selective Sensor Fusion for Robust and Efficient Autonomous Vehicle Perception
名称:HydraFusion:用于稳健高效的自动驾驶车辆感知的情境感知选择性传感器融合
论文:https://arxiv.org/abs/2201.06644
代码:https://github.com/AICPS/hydrafusion
RMMDet
题目:RMMDet: Road-Side Multitype and Multigroup Sensor Detection System for Autonomous Driving
名称:RMMDet:用于自动驾驶的路侧多类型和多组传感器检测系统
论文:https://arxiv.org/abs/2303.05203
代码:https://github.com/OrangeSodahub/RMMDet
RVFNet
题目:Radar Voxel Fusion for 3D Object Detection
名称:用于 3D 对象检测的雷达体素融合
论文:https://arxiv.org/abs/2106.14087
SeeingThroughFog
题目:Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather
名称:看透雾而不见雾:看不见的恶劣天气下的深度多模态传感器融合
论文:https://arxiv.org/abs/1902.08913
代码:https://github.com/princeton-computational-imaging/SeeingThroughFog
Cam&Lidar&Radar融合开源算法
CRLFNet
主页:https://github.com/OrangeSodahub/CRLFnet
KIPT
主页:https://github.com/Matnay/KPIT_Fusion_Object_Detection_DL
总结
之前的多传感器融合仅仅是解决功能、性能,除此之外,面对高级自动驾驶的要求,多传感器融合更应该关注功能安全、冗余/备份/失效、全场景全要素感知需求。
视频课程来了!
自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)
(扫码学习最新视频)
国内首个自动驾驶学习社区
近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
【自动驾驶之心】全栈技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;
添加汽车人助理微信邀请入群
备注:学校/公司+方向+昵称