点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
多传感器标定是许多领域应用的基础,直接决定下游应用的性能和上限,自动驾驶之心为大家整理了激光雷达-相机-毫米波雷达-IMU标定相关常见问题与答案,希望能够帮助到大家,先预定100问,我们后面将持续保持更新,冲,冲,冲!!!
所有内容出自--国内首门多传感器标定课程:Lidar+Radar+Camera+IMU离线/在线近20+标定方案,欢迎扫码学习!
1)激光雷达-相机标定
问题1:有多个相机和多个激光雷达,产线中使用标定板一般怎么进行标定啊?
● 产线可以用带圆洞的标定板进行LiDAR-Camera的标定。
问题2:对激光雷达和相机,基于棋盘格的法向量标进行联合标定,发现参数不对,特别是平移参数,请问下是什么原因?
● 基于尝试优化的时候把位移限制一下,约束在你的测量值附近,就是位移 |x - &|<#,&是你的测量值, # 是你的测量的误差。
问题3:激光雷达和相机联合标定,标定完验证发现只有检测物体在一定角度和一定距离时,点云和图像才能投射到一起,在图像四周和比较靠近相机的位置,点云投射效果就变得很差,这是什么原因呢?我现在是给大卡车上的相机和激光雷达做联合标定,2个设备的距离有1米以上
● 这估计是位移标定的有误差,在远的地方看不出来,近距离的话,位移误差就容易提现出来了
问题4:openCalib中自动联合标定激光雷达和相机,提取图像特征对图像有什么要求吗?包括背景复杂度,特定颜色需求,openCalib中仅说明了提取线特征,用官方给的示例图片提取特征较好,但是我用自己的图片提取特征效果就很差
● 试试升级版的代码,这个通用性非常强,https://github.com/OpenCalib/CalibAnything 用这个来标定你的场景试试
问题5:我看到opencalib代码里面的lidar2camera项目 输入需要的数据为pcd,jpg,内参和外参,这个初始外参是怎么获取的啊?
● 通过其他方式,比如理论安装位姿,可以再看看预习资料。
问题6:想问一下,lidar2cam标定用pnp算法,对于3d-2d采样点分布是不是有要求,我只用离车近的8个点去计算,得到结果是近处投影效果很好,远处就不行了,是不是近处和远处都要采集对应点?
● 是的,远近最好都要有,否则容易求出局部解。
问题7:第二章最后一节,激光雷达&相机内外参联合标定,标定得出的激光雷达外参,是指雷达坐标系相对于相机坐标系的外参吗?这个联合标定有没有代码学习一下?opencalib上我没找到。
● 可以看看lidar2camera下面的jointcalib
问题8: 老师你好,我想看一下平移约束怎么写的,想问一下代码里是否加了这个约束?看了下代码没有定位到地方。

● 因为考虑到完整性现有的代码是没有加这个约束,但是一般的量产往往都会加上这个约束。这个代码写法很简单,例如,x的设计值是0.7,安装误差为0.1。那么x的值应该为0.6~0.8之间,然后参考这个链接加在优化函数中即可
2)毫米波雷达-相机标定
问题1:标定间其实只用来标定雷达和相机传感器之间的位置,传感器和baselink用另外的方法标?
● 雷达到标定间,相机到标定间,组合得到雷达到相机,车在哪无所谓;自车中心自己定义的,怎么标定根据定义走。
问题2:请问相机和雷达到车身的相对位姿一般用什么方法标定呢?
● 这个标定课程里面也会讲到的哈,产线一般标定的都是到车身,在线标定可以用
https://github.com/PJLab-ADG/SensorsCalibration/tree/master/SensorX2car
问题3:量产车一般对相机 - 雷达的标定精度要求是多少啊,比如旋转角差0.5°还是多少?
● 量产中,一般是根据感知的容忍误差来定的。例如,有的标定算法标定了多辆车,而感知没有出问题,那么就认为现有的标定算法符合要求。现实中标定精度往往很难进行定量评估,因为没有办法获得真值,一般认为标定算法出来的结果就是真值
问题4:请问各位老师,相机和雷达外参标定后,除了主观看对齐效果,有什么客观数据可以说明效果吗
● 关键点做correspondence estimation,然后看误差,通过相对应点的重投影误差来评估标定的好坏;另外一种是通过模型来判断,其实就是一个二分类问题。用对齐的数据和没对齐的数据放到模型里面去训练
问题5:单线激光雷达有什么好的标定方法?联合标定,和相机还是雷达?
● 单线激光雷达只有一个线束,圆洞肯定提取不出来。建议用二维码或者其他标定板,提取雷达直线然后和相机提取角点进行求解。例如,可以求出物理坐标系下,雷达直线和标定板的关系,然后在通过内参,以及标定板到相机的外参求解。
问题6: 老师请问一下,标定间方法里面将雷达点提取的标定框拟合出来以后,会根据标定版尺寸将每个角点的3d信息都推测出来然后和相机2d点匹配,是这样的流程吗
● 是的,一般是用4个角的点来计算的
其它多传感器标定问题
问题1:请教大佬们一个问题,相机外参标定:标定相机外参一个方案就是收集点对。比如我想标定路口相机坐标系和世界坐标系的Rt,我的做法是在去畸变的图像上找到车道线、斑马线等有特征的静态物体,收集图像上的点坐标,并且标上序号,按照序号收集对应点在经纬坐标系下的坐标,再转换到墨卡托坐标系下。接着利用opencv接口,solvePnPRansac计算Rt(不够准),又用BA进行调优。结果发现世界坐标系下的点投影到图像上很不准,并且不准的没有规律。但这组点对用findHography接口计算单应性矩阵,可视化结果蛮准的。如果我将采集的点对按照图像区域划分计算局部Rt,投影到图像上就准了。现在觉得有两种可能,1是采集经纬坐标的设备精度太差,2是计算外参算法有问题。
● 建议,t自己测量一个,只优化R试试;或者优化的时候给t加个范围约束
① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码免费学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、Occupancy、多传感器融合、大模型、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)