本文首发于公众号【DeepDriving】,欢迎关注。
0. 前言
在自动驾驶感知任务中,传统的3D
场景理解方法大多数都集中在3D
目标检测上,难以描述任意形状和无限类别的真实世界物体。3D
占用网络(Occupancy Network
)是特斯拉在2022年
提出的一种新型感知网络,这种感知网络借鉴了机器人领域中的占用网格建图的思想,将感知环境以一种简单的形式进行在线3D
重建。简单来说,就是将机器人周围的空间划分为一系列网格单元,然后定义哪个单元被占用,哪个单元是空闲的,通过预测3D
空间中的占用概率来获得一种简单的3D
空间表示,这样就可以更全面地实现3D
场景感知。
近期对最近几年自动驾驶领域中的3D
占用网络算法(主要是基于纯视觉)和数据集做了一些调研,本文将做一个简单的汇总。