自动驾驶3D占用预测(Occupancy Prediction)算法调研

本文首发于公众号【DeepDriving】,欢迎关注。

0. 前言

在自动驾驶感知任务中,传统的3D场景理解方法大多数都集中在3D目标检测上,难以描述任意形状和无限类别的真实世界物体。3D占用网络(Occupancy Network)是特斯拉在2022年提出的一种新型感知网络,这种感知网络借鉴了机器人领域中的占用网格建图的思想,将感知环境以一种简单的形式进行在线3D重建。简单来说,就是将机器人周围的空间划分为一系列网格单元,然后定义哪个单元被占用,哪个单元是空闲的,通过预测3D空间中的占用概率来获得一种简单的3D空间表示,这样就可以更全面地实现3D场景感知。

近期对最近几年自动驾驶领域中的3D占用网络算法(主要是基于纯视觉)和数据集做了一些调研,本文将做一个简单的汇总。

1. 论文和算法

### OCC算法自动驾驶中的应用与实现 #### 一、OCC算法概述 OCC(Occupancy Prediction算法的核心在于通过传感器数据预测环境中物体的空间分布情况。这种预测不仅限于可见区域,还包括不可见区域的潜在占用状态。CTF-Occ网络作为一种专门针对3D占用预测设计的模型,在保持高效性能的同时,能够准确预测复杂环境中的空间布局[^3]。 #### 二、OCC算法的实现原理 OCC算法通常结合深度学习框架完成,主要分为以下几个部分: 1. **输入数据处理** 输入数据来源于多种传感器,如激光雷达(LiDAR)、摄像头等。这些传感器捕获的数据经过预处理形成统一格式的点云或图像数据。例如,DriveWorld项目利用大规模预训练模型来提升检测、地图构建、跟踪和运动预测等多个任务的表现[^4]。 2. **特征提取** 特征提取阶段采用卷积神经网络(CNN)或其他先进的深度学习架构。对于3D占用预测,常用的有PointNet++、VoxelNet等方法。这些方法可以有效捕捉局部几何结构并生成全局描述符。 3. **占用概率估计** 使用回归或分类的方式计算每个体素被占据的概率。这一过程可能涉及到多尺度融合策略以增强细节保留能力。例如,HOG特征检测器曾用于早期目标检测领域,虽然其适用范围较窄,但在某些特定条件下仍具有参考价值[^2]。 4. **后处理优化** 预测结果需进一步平滑化并通过阈值设定最终确定哪些位置被认为是“已占”。此外还可以引入时间维度上的连续性约束改善稳定性。 #### 三、代码示例 以下是基于PyTorch的一个简单OCC算法实现片段,展示了如何定义一个基础的3D占用预测网络: ```python import torch import torch.nn as nn import torch.optim as optim class SimpleOCCNet(nn.Module): def __init__(self, input_channels=1, output_classes=2): super(SimpleOCCNet, self).__init__() # 定义简单的卷积层序列 self.conv_layers = nn.Sequential( nn.Conv3d(input_channels, 16, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool3d(kernel_size=2), nn.Conv3d(16, 32, kernel_size=3, padding=1), nn.ReLU(), nn.MaxPool3d(kernel_size=2) ) # 输出层 self.fc_layer = nn.Linear(32 * 8 * 8 * 8, output_classes) def forward(self, x): batch_size = x.size(0) features = self.conv_layers(x) flattened = features.view(batch_size, -1) out = self.fc_layer(flattened) return out # 初始化模型及相关组件 model = SimpleOCCNet() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # 训练循环伪代码 for epoch in range(num_epochs): for data in dataloader: inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() print("Training completed.") ``` 此代码仅为示意用途,实际部署时应考虑更复杂的网络结构及更多的超参数调整选项。 #### 四、总结 综上所述,OCC算法通过对周围环境语义信息的有效感知支持了自动驾驶系统的决策制定过程。无论是理论层面还是实践操作均体现了高度的技术集成度和技术难度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeepDriving

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值