【论文笔记】FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomou

FlatFusion: Delving into Details of Sparse Transformer-based Camera-LiDAR Fusion for Autonomous Driving
原文链接:https://arxiv.org/abs/2408.06832

简介:从稀疏数据中整合信息的点云Transformer十分高效。但与摄像头的融合存在挑战,因为图像像素是密集而深度模糊的。本文探索了基于Transformer的稀疏摄像头-激光雷达融合,包括图像到3D和激光雷达到2D的映射、注意力邻域分组、单模态token化和Transformer的微结构。通过实验选择最有效的方案,本文提出FlatFusion,其性能能超过基于稀疏Transformer的SotA方法(如UniTRCMTSparseFusion)。

1. 通用框架

在这里插入图片描述
如图所示,基于稀疏Transformer的摄像头-激光雷达融合框架包含token化各模态输入的主干&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

byzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值