对抗防御概述与相关

【时间】2019.11.05

【题目】对抗防御概述与相关

1、新网络安全军备竞赛场:对抗样本防护

资讯,提到了现有的一些对抗样本防御方法。

资源汇总:Awesome Knowledge Distillation

1)防御性蒸馏

思路是:Papernot等人在其论文《Distillationas a defense to adversarial perturbations against deep neural networks》中将distillation技术用于对抗样本的防护。具体做法是将第一个深度神经网络输出的分类可能性结果输入到第二个网络中进行训练。

missing

ps:模型蒸馏介绍:1、趣味深度学习系列(一):深度学习技术中的 “教师”与“学生”

                              2、【Knowledge Distillation】知识蒸馏总结

1)传统蒸馏方法:

论文:Hinton,2015「Distilling the Knowledge in a Neural Network」:关于Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks的理解

640?wx_fmt=png

2)FSP蒸馏方法:

论文「A Gift from Knowledge Distillation: FastOptimization, Network Minimization and Transfer Learning」

相比传统的蒸馏方法直接用小模型去拟合大模型产生的soft target,论文尝试用小模型去拟合大模型不同层特征之间的转换关系(flow of the solution procedure),用一个 FSP 矩阵(特征的内积)来表示不同层特征之间的关系

640?wx_fmt=png

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值