【时间】2020.01.07
【题目】【SciPy库】scipy.optimize.fmin_l_bfgs_b进行L-BFGS优化
具体用法参考官方文档:scipy.optimize.fmin_l_bfgs_b
x,min_val,info=scipy.optimize.fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1, maxfun=15000, disp=None)
一、参数:主要是loss函数func、待更新参数初始值x0、梯度函数fprime以及maxfun(梯度更新的次数)
注意grad必须是展开的向量(2D),如果x是3D矩阵,需要先flaten.
func : callable f(x,*args)
Function to minimise.最小化的目标,一般是loss函数
x0 : ndarray
Initial guess.最初的猜测,即待更新参数初始值。
fprime : callable fprime(x,*a