【SciPy库】scipy.optimize.fmin_l_bfgs_b进行L-BFGS优化

【时间】2020.01.07

【题目】【SciPy库】scipy.optimize.fmin_l_bfgs_b进行L-BFGS优化

具体用法参考官方文档:scipy.optimize.fmin_l_bfgs_b

x,min_val,info=scipy.optimize.fmin_l_bfgs_b(func, x0, fprime=None, args=(), approx_grad=0, bounds=None, m=10, factr=10000000.0, pgtol=1e-05, epsilon=1e-08, iprint=-1, maxfun=15000, disp=None)

一、参数:主要是loss函数func、待更新参数初始值x0、梯度函数fprime以及maxfun(梯度更新的次数)

注意grad必须是展开的向量(2D),如果x是3D矩阵,需要先flaten.

func : callable f(x,*args)   

Function to minimise.最小化的目标,一般是loss函数

x0 : ndarray

Initial guess.最初的猜测,即待更新参数初始值。

fprime : callable fprime(x,*a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值