f(x)可积的三个充分一个必要

文章讨论了函数在[a,b]区间上定积分存在的几个充分条件,包括函数的连续性、有界性和间断点的类型,以及单调性。同时指出,定积分存在意味着函数在该区间上有界,但有界并不一定保证连续。文中还包含若干经典例题用于巩固这些概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.三个充分一个必要

在这里插入图片描述

三个充分:
①若f(x)在[a,b]上连续,则 定积分(图片所示) 必定存在。
②若f(x)在[a,b]上有界,且只有有限个间断点,则上述定积分(图片)必存在。
③若f(x)在[a,b]上只有有限个第一类的间断点,则上述定积分(图片)必存在。
④若f(x)在[a,b]上单调,则定积分存在。
必要条件:
若定积分(图片)存在则 f(x)在[a,b]上必有界。

注:有上述可知,有界条件比闭区间连续弱。所以f(x)闭区间连续=>f(x)有界

2.经典例题1

在这里插入图片描述

2.经典例题2

在这里插入图片描述

2.经典例题3

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值