一维离散动力系统计算的基本理论

  • 离散动力系统计算的基本理论

离散动力系统的基本概念与基本定理

离散动力系统的定义

  • 形如 x_{k+1}=\varphi(x_k,\lambda),k=0,1,...的迭代系统称为一个一阶离散动力系统。其中一阶指x_{k+1}显式的仅依赖前一项
  • 类似得,我们可以定义m-阶离散动力系统 和更高维度的动力系统

不动点

不动点

  • x^*=\varphi(x^*,\lambda)
  • sink/attractive fixed point
    • x^*=\varphi(x^*,\lambda)。若存在x^*的一个邻域U(x^*,\varepsilon )\equiv \begin{Bmatrix} x||x-x^*|\leq \varepsilon ,\varepsilon > 0 \end{Bmatrix}对于所有x_0\subset U(x^*,\varepsilon )都有\lim_{k\rightarrow \infty}x_k=x^*
  • source/repelling fixed point
    • x^*=\varphi(x^*,\lambda)。若存在x^*的一个邻域U(x^*,\varepsilon )\equiv \begin{Bmatrix} x||x-x^*|\leq \varepsilon ,\varepsilon > 0 \end{Bmatrix}对于x_0\subset U(x^*,\varepsilon )存在|x_k-x^*|> \varepsilon
  • hyperbolic fixed point
    • \begin{vmatrix} \varphi(x^*,\lambda) \end{vmatrix}\neq1
  • semi-attractive fixed point
    • x^*=\varphi(x^*,\lambda)
    • \varphi'(x^*,\lambda)=1,\varphi''(x^*,\lambda)\neq 0

sink and source 判定定理1

  • x^*=\varphi(x^*,\lambda),如果\begin{vmatrix} \varphi'(x^*,\lambda) \end{vmatrix}<1不动点是attractive 的,如果\begin{vmatrix} \varphi'(x^*,\lambda) \end{vmatrix}>1不动点是repel 的

sink and source 判定定理2

  • x^*=\varphi(x^*,\lambda)
  • \varphi'(x^*,\lambda)=1,\varphi''(x^*,\lambda)= 0
  • \varphi'''(x^*,\lambda)<0 不动点attract
  • \varphi'''(x^*,\lambda)>0不动点repel

周期与不变集

周期轨道

  • 周期点与周期\varphi(x_{k+1},\lambda)=\varphi(x_k,\lambda)
  • 周期轨道
    • 对于固定的\lambda,所有相同周期点的集合称为一个周期轨道
  • 吸引的周期轨道
    • \begin{Bmatrix} x_\alpha,x_\beta \end{Bmatrix}是动力系统\varphi(x,\lambda)的一个2-周期轨道。如果存在x_\alphax_\beta周围的两个开邻域U_\alpha(x_\alpha,\varepsilon _\alpha)U_\beta(x_\beta,\varepsilon _\beta)。当x_0\subset U_\alpha \cup U_\beta时,对于充分大的k永远有\begin{Bmatrix} x_k \end{Bmatrix}\subset\begin{Bmatrix} x_\alpha,x_\beta \end{Bmatrix},则这个2-周期轨道是吸引的
  • bifurcation and bifurcation point
    • 动力系统轨道发生突变的参数值
    • 定义。。。略。。。
  • pitchfork bifurcation 
  • saddle noed bifurcation
  • transcritical bifurcation

2-周期轨道吸引与排除判定定理

  • \begin{Bmatrix} x_\alpha,x_\beta \end{Bmatrix}是动力系统\varphi(x,\lambda)的一个2-周期轨道,如果|\varphi'(x_\alpha)\varphi'(x_\beta)|<1(>1),则这个2-周期轨道是吸引的(排斥的)

一维离散动力系统的不变集

  • \Lambda为实数轴上的一个点集,如果\Lambda=\varphi(\Lambda),则\Lambda为动力系统的不变集

Feigenbaum 定律

Feigenbaum 第一定律

  • 分叉点\lambda_1,\lambda_2,...\lambda_1<\lambda_2<...,则有lim_{k\rightarrow \infty}\frac{\lambda_k-\lambda_{k-1}}{\lambda_{k+1}-\lambda_k}=\theta\approx4.6692016090...

Feigenbaum 第二定律

·

混沌

  • attractor S
    • S是数轴上的点集,如果对于任意给定的\varepsilon >0,都有整数K(\varepsilon )>0,使得当k>K(\varepsilon )时,动力系统x_{k+1}=\varphi(x_k,\lambda)的所有点x_k都和S中的某些点满足|x_k-S(k)|\leq \varepsilon,则称{x_k}收敛于S,S为 attractor
  • transitive 
    • S 是动力系统\varphi(x,\lambda)的一个 attractor,x_0\in S。从x_0出发的一条动力系统轨道为x_{k+1}=\varphi(x_k,\lambda)。设x^* 为 S 的任意点,\varepsilon >0,如果永远可以找到x_k,|x^*-x_k|<\varepsilon则称该动力系统在集合S 上 transitive 
  • 混沌的
    • 一个动力系统在 attractor 上是对初始值敏感的和传递的,那么动力系统的是混沌的

Euler 法的伪解

spurious solutions

  • 对于显式Euler 法,对于\lambda = h\delta 取不同值时可以给出形如2^k 的任意周期的周期轨道或者混沌
  • 对于隐式Euler 法,可能会产生吸引的不动点
  • 可以证明,\theta = 1/2时梯形方法不可能产生2-周期轨道

u_{n+1}=u_n+h[(1-\theta)G(u_n)+\theta G(u_{n+1})]

  • Sarkovskii 定理

  •  下一章同伦算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值