- 离散动力系统计算的基本理论
离散动力系统的基本概念与基本定理
离散动力系统的定义
- 形如
的迭代系统称为一个一阶离散动力系统。其中一阶指
显式的仅依赖前一项
- 类似得,我们可以定义m-阶离散动力系统 和更高维度的动力系统
不动点
不动点
- sink/attractive fixed point
。若存在
的一个邻域
对于所有
都有
- source/repelling fixed point
。若存在
的一个邻域
对于
存在
- hyperbolic fixed point
- semi-attractive fixed point
sink and source 判定定理1
,如果
不动点是attractive 的,如果
不动点是repel 的
sink and source 判定定理2
- 若
不动点attract
- 若
不动点repel
周期与不变集
周期轨道
- 周期点与周期
- 周期轨道
- 对于固定的
,所有相同周期点的集合称为一个周期轨道
- 对于固定的
- 吸引的周期轨道
是动力系统
的一个2-周期轨道。如果存在
和
周围的两个开邻域
和
。当
时,对于充分大的k永远有
,则这个2-周期轨道是吸引的
- bifurcation and bifurcation point
- 动力系统轨道发生突变的参数值
- 定义。。。略。。。
- pitchfork bifurcation
- saddle noed bifurcation
- transcritical bifurcation
2-周期轨道吸引与排除判定定理
是动力系统
的一个2-周期轨道,如果
,则这个2-周期轨道是吸引的(排斥的)
一维离散动力系统的不变集
- 设
为实数轴上的一个点集,如果
,则
为动力系统的不变集
Feigenbaum 定律
Feigenbaum 第一定律
- 分叉点
且
,则有
Feigenbaum 第二定律
- 略
·
混沌
- attractor S
- S是数轴上的点集,如果对于任意给定的
,都有整数
,使得当
时,动力系统
的所有点
都和S中的某些点满足
,则称{x_k}收敛于S,S为 attractor
- S是数轴上的点集,如果对于任意给定的
- transitive
- S 是动力系统
的一个 attractor,
。从
出发的一条动力系统轨道为
。设x^* 为 S 的任意点,
,如果永远可以找到
则称该动力系统在集合S 上 transitive
- S 是动力系统
- 混沌的
- 一个动力系统在 attractor 上是对初始值敏感的和传递的,那么动力系统的是混沌的
Euler 法的伪解
spurious solutions
- 对于显式Euler 法,对于\lambda = h\delta 取不同值时可以给出形如2^k 的任意周期的周期轨道或者混沌
- 对于隐式Euler 法,可能会产生吸引的不动点
- 可以证明,\theta = 1/2时梯形方法不可能产生2-周期轨道
- Sarkovskii 定理
- 下一章同伦算法