离散系统的数学模型

【自控笔记】6.4 离散系统的数学模型

一、离散系统数学定义

离散系统:输入序列 r ( n ) r(n) r(n)与输出序列 c ( n ) c(n) c(n)的一种变换关系,记作 c ( n ) = F [ r ( n ) ] c(n)=F[r(n)] c(n)=F[r(n)]
如果这种变换关系为线性的,则称为线性离散系统;如果是非线性的则称为非线性离散系统。线性离散系统满足叠加定理,如果这种输入输出关系不随时间的改变而改变,则该系统称为线性定常离散系统

二、差分与差分方程

1、差分

设连续函数为 y ( k ) y(k) y(k), 其一阶前向差分为:
Δ y ( k ) = y ( k + 1 ) − y ( k ) Δy(k)=y(k+1)-y(k) Δy(k)=y(k+1)y(k)
其二阶差为:
Δ 2 y ( k ) = Δ [ Δ y ( k ) ] = Δ [ y ( k + 1 ) − y ( k ) ] = Δ y ( k + 1 ) − Δ y ( k ) = y ( k + 2 ) − 2 y ( k + 1 ) + y ( k ) Δ^2y(k)=Δ[Δy(k)]=Δ[y(k+1)-y(k)]=Δy(k+1)-Δy(k)=y(k+2)-2y(k+1)+y(k) Δ2y(k)=Δ[Δy(k)]=Δ[y(k+1)y(k)]=Δy(k+1)Δy(k)=y(k+2)2y(k+1)+y(k)

所谓的前向差分,其实就相当于数列的后一项减去前一项,类比于微分有如下关系:
lim ⁡ T → 0 Δ y ( k ) T = d y ( t ) d t \lim_{T \to 0}\frac{Δy(k)}{T}=\frac{dy(t)}{dt} T0limTΔy(k)=dtdy(t)
也就是当采样周期T=0时,差分相当于连续系统中的导数。实际上在计算机控制中,常用差分来代替微分。

差分有前向差分和后向差分,但两者实际上是可以等价的,都是关于离散信号 y ( k ) y(k) y(k)的递推式,与微分的关系也是相同的,这里就不赘述。

2、差分方程

差分方程类似于连续系统中的微分方程,是离散系统输入输出变量及其各阶差分组成的等式,同时也可以吧这个等式看成一个递推公式。n阶前向差分方程如下:
c ( k + n ) + a 1 c ( k + n − 1 ) + . . . + a n − 1 c ( k + 1 ) + a n c ( k ) = b 0 r ( k + m ) + b 1 r ( k + m − 1 ) + . . . + b m − 1 r ( k + 1 ) + b m r ( k ) c(k+n)+a_1c(k+n-1)+...+a_{n-1}c(k+1)+a_{n}c(k)\newline =b_0r(k+m)+b_1r(k+m-1)+...+b_{m-1}r(k+1)+b_{m}r(k) c(k+n)+a1c(k+n1)+...+an1c(k+1)+anc(k)=b0r(k+m)+b1r(k+m1)+...+bm1r(k+1)+bmr(k)

3、差分方程求解

(1)迭代法
首先要明确差分方程是一个递推式,迭代法就是根据输出序列的初始值,利用递推公式逐步求出系统在给定输入序列下的输出序列。

例:已知差分方程为
c ( k ) = r ( k ) + 5 c ( k − 1 ) − 6 c ( k − 2 ) c(k)=r(k)+5c(k-1)-6c(k-2) c(k)=r(k)+5c(k1)6c(k2)
输入序列r(k)=1,初始条件为c(0)=0,c(1)=1,试利用迭代法求出 c ∗ ( t ) c^*(t) c(t)
c ( 0 ) = 0 c ( 1 ) = 1 c ( 2 ) = r ( 2 ) + 5 c ( 1 ) − 6 c ( 0 ) = 6 c ( 3 ) = r ( 3 ) + 5 c ( 2 ) − 6 c ( 1 ) = 25 c ( 4 ) = r ( 4 ) + 5 c ( 3 ) − 6 c ( 2 ) = 90 . . . c ∗ ( t ) = δ ( t − 1 ) + 6 δ ( t − 2 ) + 25 δ ( t − 3 ) + . . . c(0)=0\newline c(1)=1\newline c(2)=r(2)+5c(1)-6c(0)=6\newline c(3)=r(3)+5c(2)-6c(1)=25\newline c(4)=r(4)+5c(3)-6c(2)=90 \newline ...\newline c^*(t)=δ(t-1)+6δ(t-2)+25δ(t-3)+... c(0)=0c(1)=1c(2)=r(2)+5c(1)6c(0)=6c(3)=r(3)+5c(2)6c(1)=25c(4)=r(4)+5c(3)6c(2)=90...c(t)=δ(t1)+6δ(t2)+25δ(t3)+...

(2)Z变换法

Z变换法可以根据Z变换的正负偏移定理,对差分方程两边求Z变换。再根据初始条件和给定输入信号的Z变换 R ( z ) R(z) R(z),求出系统输出的Z变换表达式。对其进行Z反变换可求得系统的输出序列从c(k)。

例:已知描述离散控制系统的差分方程为
c ( k + 2 T ) + 3 c ( k + T ) + 2 c ( k ) = 0 c(k+2T)+3c(k+T)+2c(k)=0 c(k+2T)+3c(k+T)+2c(k)=0
且c(0)=0,c(1)=1,求差分方程的解。

解:利用Z变换超前定理对差分方程两边求Z变换得
z 2 C ( z ) − z 2 C ( 0 ) − z C ( 1 ) + 3 z C ( z ) − 3 z C ( 0 ) + 2 C ( z ) = 0 z^2C(z)-z^2C(0)-zC(1)+3zC(z)-3zC(0)+2C(z)=0 z2C(z)z2C(0)zC(1)+3zC(z)3zC(0)+2C(z)=0
整理得Z变换得表达式为
C ( z ) = z z 2 + 3 z + 2 = z z + 1 − z z + 2 C(z)=\frac{z}{z^2+3z+2}=\frac{z}{z+1}-\frac{z}{z+2} C(z)=z2+3z+2z=z+1zz+2z
查表可得Z反变换的结果,即输出序列
c ( k ) = ( − 1 ) k − ( − 2 ) k k = 0 , 1 , 2 , . . . c(k)=(-1)^k-(-2)^k \quad k=0,1,2,... c(k)=(1)k(2)kk=0,1,2,...

三、脉冲传递函数

脉冲传递函数是离散系统的复域模型,可类比于连续系统的传递函数。

1、定义:零初始条件下离散系统输出Z变换对输入Z变换之比。用 G ( z ) G(z) G(z)表示,即:
G ( z ) = C ( z ) R ( z ) G(z)=\frac{C(z)}{R(z)} G(z)=R(z)C(z)
下面来解释一下脉冲传递函数 G ( z ) G(z) G(z),下图为开环离散系统的方框图,对于一般的连续系统,当输入是离散信号时,输出仍然是连续信号,并不能使用Z变换理论进行研究。于是可以在系统输出端虚设一个理想采样开关,采样周期与输入采样同步。实际上虚设的采样开关是不存在的,它表明系统的脉冲传递函数只能描述 c ∗ ( t ) c^*(t) c(t)而不能描述 c ( t ) c(t) c(t)

设输入为单位脉冲函数 r ( t ) = δ ( t ) r(t)=δ(t) r(t)=δ(t), 其输出为为单位脉冲响应 g ( t ) g(t) g(t)。则有输入采样序列为:
r ∗ ( t ) = ∑ n = 0 ∞ r ( n T ) δ ( t − n T ) r^*(t)=\sum_{n=0}^{\infty}r(nT)δ(t-nT) r(t)=n=0r(nT)δ(tnT)
根据叠加定理有
c ( t ) = r ( 0 ) g ( t ) + r ( T ) g ( t − T ) + . . . + r ( n T ) g ( t − n T ) = ∑ n = 0 ∞ r ( n T ) g ( t − n T ) c(t)=r(0)g(t)+r(T)g(t-T)+...+r(nT)g(t-nT)=\sum_{n=0}^{\infty}r(nT)g(t-nT) c(t)=r(0)g(t)+r(T)g(tT)+...+r(nT)g(tnT)=n=0r(nT)g(tnT)
令t=kT,可得
c ( k T ) = ∑ n = 0 ∞ r ( n T ) g [ ( k − n ) T ] c(kT)=\sum_{n=0}^{\infty}r(nT)g[(k-n)T] c(kT)=n=0r(nT)g[(kn)T]
由于t<0时,g(t)=0,所以有当k<n时,g[(k-n)T]=0。即kT以后的输入脉冲不会对kT时刻的输出信号造成影响。所以得
c ( k T ) = ∑ n = 0 k r ( n T ) g [ ( k − n ) T ] = r ( k T ) ∗ g ( k T ) c(kT)=\sum_{n=0}^{k}r(nT)g[(k-n)T]=r(kT)*g(kT) c(kT)=n=0kr(nT)g[(kn)T]=r(kT)g(kT)
即说明:系统输出的离散序列等于输入采样序列与系统传函采样序列的卷积
根据卷积定理,则有
C ( z ) = G ( z ) R ( z ) C(z)=G(z)R(z) C(z)=G(z)R(z)
又根据Z变换的定义
G ( Z ) = ∑ n = 0 ∞ g ( n T ) z − n G(Z)=\sum_{n=0}^{\infty}g(nT)z^{-n} G(Z)=n=0g(nT)zn
G ( z ) G(z) G(z)就是系统单位脉冲响应序列的Z变换
另外需要注意 G ( Z ) ≠ G ( s ) s = z G(Z)≠G(s)_{s=z} G(Z)=G(s)s=z

2、脉冲传递函数的性质
(1) G ( z ) G(z) G(z)是关于z的复函数
(2) G ( z ) G(z) G(z)与输入输出序列没有关系,和它们的比有关,即之和系统的结构参数有关。
(3) G ( z ) G(z) G(z)与系统的差分方程是一一对应的,可相互求解。
(4) G ( z ) G(z) G(z),脉冲传递函数就是系统单位脉冲响应序列的Z变换

3、脉冲传递函数的局限性
(1)原则上,不反应非零初始条件下系统响应的全部信息。但不影响讨论。
(2)一般只适合描述单输入单输出离散系统。
(3)只适合用于描述线性定常离散系统。

四、开环离散系统的脉冲传递函数

1、串联环节之间有采样开关

这种情况下,各串联环节之间要分开进行Z变换。
G ( z ) = G 1 ( z ) G 2 ( z ) G(z)=G_1(z)G_2(z) G(z)=G1(z)G2(z)

2、串联环节之间没有采样开关
这种情况下,各串联环节之间要乘在一起进行Z变换。
G ( z ) = Z [ G 1 ( s ) G 2 ( s ) ] = G 1 G 2 ( z ) G(z)=Z[G_1(s)G_2(s)]=G_1G_2(z) G(z)=Z[G1(s)G2(s)]=G1G2(z)
结构框图如下:

3、有零阶保持器的开环系统脉冲传递函数

对于带有零阶保持器的系统可做如下变换:

G ( z ) = z − 1 z Z [ G 0 ( s ) s ] G(z)=\frac{z-1}{z}Z[\frac{G_0(s)}{s}] G(z)=zz1Z[sG0(s)]

直接将零阶保持器的分母凑到系统传函中,在将余下的部分直接进行变量替换。加零阶保持器不改变 系统的阶数,不改变开环极点,只改变开环零点。

五、离散系统的闭环脉冲传递函数

闭环离散控制系统的典型结构图如下所示:

一般来说,不能直接使用梅森公式求系统闭环脉冲传递函数,这能一点点地从后往前推。
以下两种情况可以使用梅森公式进行求解:
1、单回路(无前馈通道)离散系统,在前向通道至少存在一个实际的采样开关。
2、离散系统结构图中各环节之间均有或有等效采样开关时。

  • 10
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值