线性代数|矩阵乘法的消去律

前置性质 1 若可逆矩阵 P \boldsymbol{P} P Q \boldsymbol{Q} Q 使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B,则 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B)

证明见 “矩阵的秩的性质”。

前置定理 2 设 A \boldsymbol{A} A B \boldsymbol{B} B 为 $m \times n $ 矩阵,那么

  1. A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} ArB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P,使 P A = B \boldsymbol{P} \boldsymbol{A} = \boldsymbol{B} PA=B
  2. A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} AcB 的充分必要条件是存在 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 A Q = B \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} AQ=B
  3. A ∼ B \boldsymbol{A} \sim \boldsymbol{B} AB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B

证明见 “矩阵初等变换与矩阵乘法的联系”。


定理(矩阵乘法的消去律) 设 A B = O \boldsymbol{A} \boldsymbol{B} = \boldsymbol{O} AB=O,若 A \boldsymbol{A} A 为列满秩矩阵,则 B = O \boldsymbol{B} = \boldsymbol{O} B=O

证明 不妨设 A \boldsymbol{A} A m × n m \times n m×n 矩阵, B \boldsymbol{B} B n × l n \times l n×l 矩阵;其中 A \boldsymbol{A} A 为列满秩矩阵,即 R ( A ) = n R(\boldsymbol{A}) = n R(A)=n。于是, A \boldsymbol{A} A 的行最简形矩阵矩阵为 ( E n O ) m × n \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix}_{m \times n} (EnO)m×n,根据前置定理 2,有 m m m 阶可逆矩阵 P \boldsymbol{P} P 使 P A = ( E n O ) \boldsymbol{P} \boldsymbol{A} = \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix} PA=(EnO)。于是
P O = P A B = ( E n O ) B = ( B O ) \boldsymbol{P} \boldsymbol{O} = \boldsymbol{P} \boldsymbol{A} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{O} \end{pmatrix} PO=PAB=(EnO)B=(BO)
根据前置性质 1 可知, R ( P O ) = R ( O ) = 0 R(\boldsymbol{PO}) = R(\boldsymbol{O}) = 0 R(PO)=R(O)=0,所以 R ( B O ) = R ( B ) = 0 R \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{O} \end{pmatrix} = R(\boldsymbol{B}) = 0 R(BO)=R(B)=0,故 B = O \boldsymbol{B} = \boldsymbol{O} B=O。得证。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值