前置性质 1 若可逆矩阵 P \boldsymbol{P} P、 Q \boldsymbol{Q} Q 使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B,则 R ( A ) = R ( B ) R(\boldsymbol{A}) = R(\boldsymbol{B}) R(A)=R(B)。
证明见 “矩阵的秩的性质”。
前置定理 2 设 A \boldsymbol{A} A 和 B \boldsymbol{B} B 为 $m \times n $ 矩阵,那么
- A ∼ r B \boldsymbol{A} \stackrel{r}{\sim} \boldsymbol{B} A∼rB 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P,使 P A = B \boldsymbol{P} \boldsymbol{A} = \boldsymbol{B} PA=B;
- A ∼ c B \boldsymbol{A} \stackrel{c}{\sim} \boldsymbol{B} A∼cB 的充分必要条件是存在 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 A Q = B \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} AQ=B;
- A ∼ B \boldsymbol{A} \sim \boldsymbol{B} A∼B 的充分必要条件是存在 m m m 阶可逆矩阵 P \boldsymbol{P} P 和 n n n 阶可逆矩阵 Q \boldsymbol{Q} Q,使 P A Q = B \boldsymbol{P} \boldsymbol{A} \boldsymbol{Q} = \boldsymbol{B} PAQ=B。
证明见 “矩阵初等变换与矩阵乘法的联系”。
定理(矩阵乘法的消去律) 设 A B = O \boldsymbol{A} \boldsymbol{B} = \boldsymbol{O} AB=O,若 A \boldsymbol{A} A 为列满秩矩阵,则 B = O \boldsymbol{B} = \boldsymbol{O} B=O。
证明 不妨设 A \boldsymbol{A} A 为 m × n m \times n m×n 矩阵, B \boldsymbol{B} B 为 n × l n \times l n×l 矩阵;其中 A \boldsymbol{A} A 为列满秩矩阵,即 R ( A ) = n R(\boldsymbol{A}) = n R(A)=n。于是, A \boldsymbol{A} A 的行最简形矩阵矩阵为 ( E n O ) m × n \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix}_{m \times n} (EnO)m×n,根据前置定理 2,有 m m m 阶可逆矩阵 P \boldsymbol{P} P 使 P A = ( E n O ) \boldsymbol{P} \boldsymbol{A} = \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix} PA=(EnO)。于是
P O = P A B = ( E n O ) B = ( B O ) \boldsymbol{P} \boldsymbol{O} = \boldsymbol{P} \boldsymbol{A} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{E}_n \\ \boldsymbol{O} \end{pmatrix} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{O} \end{pmatrix} PO=PAB=(EnO)B=(BO)
根据前置性质 1 可知, R ( P O ) = R ( O ) = 0 R(\boldsymbol{PO}) = R(\boldsymbol{O}) = 0 R(PO)=R(O)=0,所以 R ( B O ) = R ( B ) = 0 R \begin{pmatrix} \boldsymbol{B} \\ \boldsymbol{O} \end{pmatrix} = R(\boldsymbol{B}) = 0 R(BO)=R(B)=0,故 B = O \boldsymbol{B} = \boldsymbol{O} B=O。得证。