随着机器人技术和人工智能技术的发展,自动驾驶已成为工业界和学术界的一个热门话题。为了安全导航,它需要为周围环境创建一个准确的表示,并估计其中的自车状态(即自车定位)。传统的定位方法基于GPS或实时动态(RTK)定位系统。然而,由于信号反射、时间误差和大气条件,GPS的测量误差限制在十几米以内,这对于车辆导航来说是不可接受的。RTK能够通过固定校准基站的内部校正信号来校正这些误差,但这种系统依赖于成本较高的附加基础设施。SLAM方法被认为是自动驾驶车辆定位和导航的良好解决方案,它可以实时估计移动车辆的姿态,同时构建周围环境的地图。
简述SLAM导航技术
SLAM的全称为Simultaneous Localization And Mapping即(同步定位与地图构建)。机器人从未知环境的未知地点出发,在运动过程中通过重复观测到的环境特征,定位自身位置和姿态,再根据自身位置增量式的构建地图,从而达到同时定位和地图构建的目的。
目前用于SLAM的传感器主要分为激光雷达及视觉传感器两种。
激光SLAM采用单线或多线激光雷达,一般用于室内机器人及无人驾驶领域,激光雷达的出现和普及使得测量更快更准,信息更丰富。激光雷达采集到的物体信息呈现出一系列分散的、具有准确角度和距离信息的点,被称为点云。通常,激光SLAM系统通过对不同时刻两片点云的匹配与比对,计算激光雷达相对运动的距离和姿态的改变,也就完成了对机器人自身的定位。
视觉SLAM可从环境中获取海量的、富于冗余的纹理信息,拥有超强的场景辨识能力。视觉SLAM的优点是它所利用的丰富纹理信息。例如两块尺寸相同内容却不同的广告牌,基于点云的激光SLAM算法无法区别他们,而视觉则可以轻易分辨。这带来了重定位、场景分类上无可比拟的巨大优势。同时,视觉信息可以较为容易的被用来跟踪和预测场景中的动态目标,如行人、车辆等,对于在复杂动态场景中的应用这是至关重要的。
智能巡检机器人自主导航两大解决方案
1.路径规划:SLAM+路径规划+运动控制;利用激光雷达及视觉传感器获取地图数据并构建地图,从而规避路程中可能遇到的障碍物,实现路径的规划。
2.深度学习:近年来,深度学习成为人工智能的代名词。在这个行业,前几年还是以比较传统的概率学,或者控制论的方式进行机器人自主定位导航。完全通过深度学习,直接通过摄像头数据作为信号输入,再通过神经网络直接产生出控制信号。其中像 SLAM 的过程、路径规划的过程,完全通过学习的方式就可以进行实现。
巡检机器人深度学习
深度学习于人脑相互交叉关联的神经元,通过人脑神经网络的分析和研究。模仿人脑架构处一个含有多隐层的机器学习模型。再次模型中简历一个与人脑类似的神经网络来分析、存储、和处理数据,通过大规模的数据进训练,得到大量更具代表性的特征信息,从而对样本进行分类和预测,提高分类和预测的精度。深度学习的本质是模仿人脑的多层抽象机制为大规模数据建模提供解决方案。
传统的机器人一般只进行简单的重复工作,其在工作过程中不需要了解所处的工作环境及环境变化,所做出的操作与流程和环境没有直接关联。在对机器人提出更多智能化要求的今天,机器人需要获得工作环境中的位置数据,并实时地对工作环境及其变化进行动态识别。目前,通过基于视觉的场景识别与理解来构建周围环境,是提高其智能化水平的关键技术,也是工业机器人智能化的第一步。
超维机器人SLAM导航技术的应用
超维机器人采用了激光SLAM、RGBD相机、惯性导航相结合的综合定位导航方案,率先引入了激光雷达+深度摄像机+辅助信标的方式进行“综合性导航+避障”解决方案,达到<1°的角度精度以及±2cm级别的定位精度。
采用基于Faster R - CNN的卷积神经网络深度识别算法,已选目标点可达准确率100%;拥有数十万行业量级数据,有较强的鲁棒性和容错能力,能把部分设备在仅有局部特征情况下还原接近原生特征。
超维机房巡检机器人
超维带电操作机器人
超维室外轮式巡检机器人
SLAM技术作为一项关键的定位和建图技术,正在改变人们对于导航和环境感知的认知。无论是在自动驾驶、机器人导航,还是在虚拟现实与增强现实等领域,SLAM技术都有着巨大的应用潜力。随着技术的不断发展与创新,我们有理由相信,SLAM技术将为我们创造更加智能和便利的未来。