从零开始搭建一辆无人清扫车:车辆控制、SLAM定位建图、路径规划

前言:最近有时间整理了一下在学校做过的无人清扫车相关的资料,写出来跟大家一块交流学习,主要摘自我毕业论文其中的一部分内容。这部分主要内容是把车站商场里那种有人驾驶的清扫车进行了一下无人化的改造,主要内容涉及车辆控制、SLAM定位建图以及路径规划。改完后的效果大概是这样的。(怎么上传动图的功能不太好使,汗😓,可去某乎看

在这里插入图片描述

1 无人清扫车整体结构

这个无人清扫车主要由三部分组成:由清扫车机械机身构成的机械平台;由各传感器构成的环境感知系统;由数据处理器(上位机)和底盘控制器(下位机)构成的控制系统。设计的无人清扫车组成如下图1所示。

无人清扫车设计有三种控制模式:人工驾驶模式、遥控模式、无人驾驶模式。当处于无人驾驶模式时,控制系统中的数据处理器通过环境感知系统使用传感器采集环境信息进行SLAM定位与建图,收集环境信息做出路径规划策略,下发指令给底盘控制器控制清扫车移动并执行清扫任务。

图1 无人清扫车系统框图
图1 无人清扫车系统框图

### 结构化道路无人驾驶清洁车辆路径规划算法研究 #### 一、背景介绍 在城市环境中,结构化道路上的无人驾驶清洁车辆需要高效且安全地完成清扫任务。这不仅涉及到如何避开障碍物和行人,还需要考虑最优路径的选择以提高工作效率并减少能源消耗。 #### 二、路径规划概述 对于结构化道路中的无人驾驶清洁而言,其路径规划主要依赖于预先构的道路网络模型。该模型通过的形式来表达不同路段之间的连接关系以及交通规则约束条件[^3]。具体来说: - **道级模**:利用高精度的地数据创详细的道拓扑结构; - **交叉路口处理**:针对复杂的交汇处设计专门的行为模式,确保顺利过渡而不违反交规; #### 三、关键技术分析 为了实现上述目标,当前主流的方法包括但不限于以下几个方面: ##### (一)基于搜索策略的技术方案 采用快速迭代寻优方法(Fast Iterative Search and Sampling Strategy, FISS),能够在短时间内找到满足特定性能指标的最佳轨迹序列[^2]。这类技术特别适合应用于动态变化频繁的城市环境当中,因为它能够灵活应对突发状况下的重新规划需求。 ##### (二)强化学习驱动的方式 近年来兴起的一种新思路是借助机器学习特别是深度强化学习框架来进行端到端的学习过程。这种方式可以让系统自动探索最有效的行动方针,在长期运行过程中不断积累经验从而优化自身的决策能力。 ```python import gym from stable_baselines3 import PPO env = gym.make('CleanBot-v0') model = PPO('MlpPolicy', env, verbose=1) model.learn(total_timesteps=1e5) obs = env.reset() for i in range(1000): action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) ``` 此代码片段展示了使用PPO算法训练一个简单的清洁机器人模拟器的例子。虽然这里展示的是通用型仿真平台上的应用案例,但对于实际场景下无人清扫车同样具有借鉴意义。 #### 四、挑战与展望 尽管已经取得了一定进展,但在真实世界部署之前仍有许多难题亟待解决,比如极端天气条件下传感器失效的风险评估、多辆设备协同作业时可能出现的竞争冲突管理等问题都需要进一步深入探讨。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值